

1.

KGCET - 2K25

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

SET-1

If $f: R \to R$ such that $f(x+y) - kxy = f(x) + 2y^2 \ \forall x, y \in R$ and f(1) = 2,

MATHS

	f(2) = 8 then $f(20) - f(10)$) =			
	1)600 2)300		3) 60	4)200	
2.	The maximum possible doma	in and the corresp	onding range for j	$f(x) = (-1)^x$ are	
	1) $D_f = R, R_f = [-1,1]$ 2) $D_f = R$, , ,	3		$R_f = \{-1, 1\}$
3.	Sum of the series $S = 1 + \frac{1}{2}(1$	$+2)+\frac{1}{3}(1+2+3)$	$+\frac{1}{4}(1+2+3+4)$.up to 20 terms is	
	1) 110 2) 111) 115	4)116	
	1 1 1				
4.	If $D = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1+x & 1 \\ 1 & 1 & 1+y \end{vmatrix}$ for $x = 1$	$\neq 0, y \neq 0 $ then D i	S		
	1) divisible by neither x nor y			ible by both x and y	
	3) divisible x but not y		· · · · · · · · · · · · · · · · · · ·	sible by y but not x	
5.	Let P and Q be 3x3 matrices	with $P \neq O$. If P^3			e of $P^2 + O^2$ is
	1)0 2) -1		3) -2	4) 1	2
6.	If the system of equations x :	= cy + bz, y = az +	cx, z = bx + ay has	a non -zero solutions	sthen
	$a^2 + b^2 + c^2 + 2abc$ is				
	1)0 2) 1		3) 2	4) 5	
7.	If $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$, $B = \begin{bmatrix} x & 1 \\ y & -1 \end{bmatrix}$	and $(A+B)^2 = A$	$^2 + B^2$ then (x,y) is		
	1) (1,4) 2)(2,1)		3) (3,3)	4) (0,1)	
8.	If I is the centre of a circle in				is
	1) $\overline{0}$ 2) $\overline{IA} + \overline{IB} + \overline{I}$	\overline{C}	$\frac{IA + IB + IC}{3}$	4) None	
9.	If $\bar{i} + 2\bar{j} + 3\bar{k}$, $3\bar{i} + 2\bar{j} + \bar{k}$ are	sides of a parallel	ogram, then a unit	vector parallel to one	of the diagonals
	of a parallelogram is	-		-	_
	1) $\frac{\overline{i} + \overline{j} + \overline{k}}{\sqrt{3}}$ 2) $\frac{\overline{i} - \overline{j} + \overline{k}}{\sqrt{3}}$	- 5 -	3) $\frac{\overline{i} + \overline{j} - \overline{k}}{\sqrt{3}}$ 4) $\frac{-\overline{i}}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}$	
10.	The angle between the lines	$\overline{r} = \left(2\overline{i} - 3\overline{j} + \overline{k}\right) +$	$\lambda(\overline{i}+4\overline{j}+3\overline{k})$ and	$\overline{r} = (\overline{i} - \overline{j} + 2\overline{k}) + \mu(\overline{i})$	$(i+2\overline{j}-3\overline{k})$ is
	$1) \cos^{-1}\left(\frac{9}{\sqrt{91}}\right)$	$2) \cos^{-1}\left(\frac{7}{\sqrt{84}}\right)$	3	$(3) \frac{\pi}{3}$	4) $\frac{\pi}{2}$
11.	The perpendicular distance fi	com $A(1, 4, -2)$ to	the line BC, where	B(2,1,-2) and $C(0,-2)$	-5,1) is
	1) $\frac{\sqrt{26}}{7}$	2) $\sqrt{\frac{26}{7}}$	3) $\frac{2\sqrt{2}}{7}$	26	4) $\frac{3\sqrt{26}}{7}$

12.

24.

KGCET - 2K25

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

	vectors \overline{b} and \overline{c} , then $\sin \theta$	is	-	
	1) $\frac{1}{3}$	2) $\frac{2\sqrt{2}}{3}$	3)2/3	4) $\frac{\sqrt{2}}{3}$
13.	$\overline{a}.\overline{a^1} + b.\overline{b^1} + c.\overline{c^1}$ is 1) 0	2)1	3)2	4)3
14.	If $0 < \alpha, \beta < \frac{\pi}{4}, \cos(\alpha + \beta) =$	$=\frac{4}{5},\sin(\alpha-\beta)=\frac{5}{13},\text{th}$	nen $\tan 2\alpha$ is	
	1) $\frac{33}{56}$	2) $\frac{56}{33}$	3) $\frac{16}{63}$	4) $\frac{63}{16}$
15.	$\tan^6 \frac{\pi}{9} - 33 \tan^4 \frac{\pi}{9} + 27 \tan^2 \frac{\pi}{9}$	$\frac{\pi}{9}$ is		
	1)Tan $\frac{\pi}{3}$	2) $\tan^2 \frac{\pi}{3}$	3) $\tan \frac{\pi}{6}$	4) $\tan^2 \frac{\pi}{6}$
16.	If $y = \sec^2 \theta + \cos^2 \theta, \theta \neq 0, t$			
17	1)y = 0	2) $y \le 2$	$3)y \ge -2$	4)y>2
17.	$\cos 2x + a \sin x = 2a - 7 \text{ has}$ 1) $a = 0$ 2)	a solution if $1 \le a \le 2$	3) $2 \le a \le 6$	4) $6 \le a \le 8$
18.	If a,b,c are +ve then $\tan^{-1} \sqrt{\frac{a}{a}}$	$\frac{\overline{b(a+b+c)}}{bc} + \tan^{-1} \sqrt{\frac{b(a+b+c)}{bc}}$	$\frac{\overline{a+b+c}}{ca} + \tan^{-1} \sqrt{\frac{c(a+b+c)}{a}}$	$\frac{\overline{b+c)}}{b}$ is
	1)0 2) π		3) $\pi/2$	4) $\pi/4$
19.	If in a $\triangle ABC$, $r_3 = r_1 + r_2 + r_3 + r_4 + r_5 +$			
20.	1) 120° 2) 100° The angles of a triangle are i	,		4) 80° lest side to the greatest side
21.	1) $1: \sin 10^{0}$ 2) $1: 2: 0(0,0), A(4,0), B(0,6)$ are the ΔPOA , then the locus is	ree points. If P is a po		
22	1) $4x^2 - 6y^2 = 0$ 2	•	,	, ·
22	A line L has intercepts a and through a fixed angle. Then	the same line has inter	cepts p and q on the nev	v axes, then
	1) $a^2 + p^2 = b^2 + q^2$ 2)	$a^2 + b^2 = p^2 + q^2$	3) $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{p^2} + \frac{1}{q^2}$ 4)	$\frac{1}{a^2} + \frac{1}{p^2} = \frac{1}{b^2} + \frac{1}{q^2}$
23.	If a line l passes through $(k$	(3k), $(3k,3k)$ and $(3,1)$	$k \neq 0$, then the distance	e from the origin to the line l
	is			

If p and q are the perpendicular distances from the origin to the straight lines

Let $\bar{a}, \bar{b}, and \bar{c}$ be non zero vectors such that $(\bar{a} \times \bar{b}) \times \bar{c} = \frac{1}{3} |\bar{b}| |\bar{c}| \bar{a}$. If θ is the acute angle between the

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

	$x \sec \theta - y \cos ec\theta$	$\theta = a \text{ and } x \cos \theta + y \sin \theta =$	$= a \cos 2\theta$ then	
	1) $4p^2 + q^2 = a^2$	2) $p^2 + q^2 = a^2$	3) $p^2 + 2q^2 = a^2$	4) $4p^2 + q^2 = 2a^2$
25.	The number of lin	hes that are parallel to $2x$ -	+6y-7=0 and have an	n intercept 10 between the coordinate
	axes is			
	1) 1	2) 2	3) 4	4) infinitely many
26.		sented by the equation ax	$bx^{2}y + cxy^{2} + dy^{3} = 0$	are at right angles then
	$a^2 + d^2 + ac + bd$			
2.7	1)-1	2) 0	3) 1	4) $ab+cd$
27.		of the triangle formed by		
	1) (2,2,2)	2) (1,1,1)	, , , , , ,	4) (-1,2,2)
28.	If the direction co	osines of two lines are sucl	h that $l + m + n = 0$, $l^2 + m + n = 0$	$m^2 - n^2 = 0$ then angle between
	1) $\frac{\pi}{2}$	2) $\frac{\pi}{3}$	3) $\frac{\pi}{4}$	4) $\frac{\pi}{6}$
29.	The projection of	the join of the two points	(1,4,5)(6,7,2) on the li	ine whose d.r's are (4,5,6)
	1) $\frac{13}{\sqrt{77}}$	2) 7/6	3)21	4) 7/9
30.	$Lt_{x\to 0} \frac{\tan\left[e^2\right]x^2 - t}{\sin^2}$	$\frac{\operatorname{an}\left[-e^2\right]x^2}{x}$ is		
	1) 0	2) 8	3) 15	4) 20
31.	If $f(x) = \frac{1}{\sin(x \log x)}$	$\frac{(a^x - 1)^3}{g a) \log(1 + x^2 \log a^2)}$ is co	ontinuous at x=0 then f(0) is
	1)log a	2) 2 log a	3) $\log a^{-1}$	4) $\log \sqrt{a}$
32.	If $f(x) = \frac{1}{x^2 - 17x^2}$	$\frac{1}{x+66}$ then $f\left(\frac{2}{x-2}\right)$ is d	liscontinuous at x=	
	1) $2, \frac{7}{3}, \frac{25}{11}$	2) $2, \frac{8}{3}, \frac{24}{11}$	3) $2, \frac{7}{3}, \frac{24}{11}$	4) None
33.	If g is inverse of	a function f and $f^{1}(x) = \frac{1}{x^{2}}$	$\frac{1}{1+x^5}$, then $g^1(x)$ is ea	qual to
	$1) \; \frac{1}{1 + (g(x))^5}$	2) $1+(g(x))^5$	3) $1+x^5$	4) $5x^4$
34.	If $\sqrt{1-x^6} + \sqrt{1-y^6}$	$\overline{y^6} = a^3(x^3 - y^3)$ then $\frac{dy}{dx}$ is	3	
	$1) \frac{x^2}{y^2} \sqrt{\frac{1 - x^6}{1 - y^6}}$	$2) \ \frac{y^2}{x^2} \sqrt{\frac{1 - y^6}{1 - x^6}}$	$3) \ \frac{x^2}{y^2} \sqrt{\frac{1-y^2}{1-x^2}}$	4) $\frac{y^2}{x^2} \sqrt{\frac{1-x^6}{1-y^6}}$
35.	If $x = \cos \theta + \theta \sin \theta$	$n \theta, y = \sin \theta - \theta \cos \theta$ ther	$\frac{d^2y}{dx^2}$ is	

KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

	1) $\frac{\cos ec^3 \theta}{\theta}$	2) $\frac{s ce^3 \theta}{\theta}$	3) $\frac{\operatorname{Tan}^3 \theta}{\theta}$	4) $\frac{\cot^3 \theta}{\theta}$
36.	The area of the tria	ingle formed by the nor	mal to the curve $x = e^{\sin y} at$ (1)	,0) with the coordinate axes is
	1) $\frac{1}{4}$	2) $\frac{1}{2}$	3) $\frac{3}{4}$	4) 1
37.		ed into a spherical ballonen it reaches the value	oon at the rate of $30 ft^3 / min$.' of 15ft is	Then the rate at which the
	1) $\frac{1}{30\pi}$ ft / min	$2) \frac{1}{15\pi} ft / \min$	$3) \frac{1}{20} ft / \min$	4) $\frac{1}{25}$ ft / min
38.	The condition that	$f(x) = ax^3 + bx^2 + cx +$	d has no extreme value is	
	1) $b^2 = 4ac$	$2) b^2 = 3ac$	3) $b^2 < 3ac$	4) $b^2 > 3ac$
39.	The constant c of	Lagrange's theorem for	$f(x) = \frac{x}{x-1} in[2,4]$ is	
	1) 1	2) $\sqrt{3}$	3) $\sqrt{3} + 1$	4) $\sqrt{3} + 2$
40.	The maximum area	a of the rectangle that ca	an be inscribed in a circle of ra	adius r is
	1) πr^2	2) r^2	3) $\frac{\pi r^2}{4}$	4) $2r^2$
41.	$\operatorname{Tan}(i\log\left(\frac{a-ib}{a+ib}\right)) \text{ is}$			
	1)ab	$2) \frac{2ab}{a^2 - b^2}$	200	$4) \frac{2ab}{a^2 + b^2}$
42.	The maximum value	e of $ z $ when z satisfies	the condition $\left z + \frac{2}{z}\right = 2$ is	
	1) $\sqrt{3}-1$	2) $\sqrt{3}$	3) $\sqrt{3} + 1$	4) $\sqrt{2} + \sqrt{3}$
43.	The value of amp(id	$(\omega) + amp(i\omega^2)$ is		
	1)0	$2) \frac{\pi}{2}$	3) π	4) − <i>π</i>

If $x^2 + bx + a = 0$, $ax^2 + x + b = 0$ have a common root and the first equation has equal roots, then $2a^2 + b$

1) -1

If $x_n = \cos\left(\frac{\pi}{2^n}\right) + i\sin\left(\frac{\pi}{2^n}\right)$, then $\prod_{n=1}^{\infty} x_n$ is

3) $\frac{1}{\sqrt{2}}$

4) 2

The range of $\frac{x^2 - 2x + 9}{x^2 + 2x + 9} (x \in R)$ is

1) $\left(-\infty,0\right] \cup \left[1,\infty\right)$ 2) $\left[\frac{1}{2},2\right]$ 3) $\left(-\infty,-2/9\right) \cup \left(1,\infty\right)$ 4) $\left(-\infty,-6\right] \cup \left[-2,\infty\right)$

4) $\frac{i}{\sqrt{2}}$

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

		-		
47.	If α, β, γ are the	roots of the equation $2x^3$	$-3x^2 + 5x - 7 = 0 $ then \(\)	$\sum \alpha^2 \beta^2$ is
	1) $-\frac{17}{4}$	2) 17	3) $\frac{-13}{4}$	4) 13
	4	4	4	4
48.	The sum of two r	oots of the equation $x^4 - x$	$x^3 - 16x^2 + 4x + 48 = 0 i$	s zero. If $\alpha, \beta, \gamma, \delta$ are the roots of
	this equation, the	en $\alpha^4 + \beta^4 + \gamma^4 + \delta^4$ is		
	1) 123	2) 369	3) 132	4) 396
49.	All the numbers	,	,	arranged in the increasing order of
	1)70	2) 135	3) 275	4) 584
50.	,	ositive integral solutions of	· · · · · · · · · · · · · · · · · · ·	,
	1) 30	2) 27	3) 8	4) 10
51.	The greatest num	ber of points of intersection	on of 8 lines and 4 circle	es is
	1) 64	2) 92	3)104	4) 128
52.	The term indepen	dent of x in $\left(\frac{x+1}{x^{2/3} - x^{1/3} + 1}\right)$	$-\frac{x-1}{x-x^{1/2}}\Big)^{10}$ is	
	1) 210	2) 310	3) 4	4) 120
53.	If $\alpha = \frac{5}{2!3} + \frac{5.7}{3!3}$	$\frac{7}{2} + \frac{5.7.9}{4!3^3} + \dots + \infty$, then α^2	$^{2}+4\alpha is$,
	1) 21	2) 23	3) 25	4) 27
54.	If $\frac{x^4}{(x^2+1)(x-2)}$	$f = f(x) + \frac{Ax + B}{x^2 + 1} + \frac{C}{x - 2}$	then $f(14) + 2A - B =$	
	1) 5C	2) 4C	3) 6C	4) 7C
55.		ms is 49. It was discovered 40,20,50 respectively, the		n should have been 60,70,80, were
	1) 48	2) 82.5	3) 50	4) 80
56.		n = 42 then mode is		
	1) 39	2) 36	3) 38	4) 40
57.	letter 'T' printed probability of ma	on them. If three cards are aking ward IIT is	e picked up at random a	them and the other 10 cards have the and kept in the same order, the
	1)4/27	2) 5/38	3) 1/8	4) 9/80
58.		tion of each candidate is e		interview,4 at the second and 6 at the probability that A will be selected for
	1) 1/2	2) 1/3	3)1/4	4)1/9
59.	A box contains 2	4 identical balls of which at a time with replacemen	12 are white and 12 bla	ack. The balls are drawn at random that a white ball is drawn for the 4 th
	1) 5/64	2) 27/32	3) 5/32	4) 1/2
60.	<i>'</i>	,	,	ng relevant enquiry follow Poission

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

		n average of 5 phone one call during a 10-min		ntervals the probability that	there
	1)6/55	2) $6/e^5$		4) 5/6	
61.	,	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	the point (1,0) and passes the	rough
	1) 6/5	2) 5/3	3) 10/3	4) 3/5	
62.	tangents is 3x+y=0	, then the equation of	the other tangent is	-1). If the equation of one o	f the
	1) 3x - y = 0	2) x + 3y = 0	, ,	0 4) x + 2y = 0	
63.	A circle passes thro	ough the point (3,4) ar	nd cuts the circle $x^2 + y^2 = 0$	a^2 orthogonally, the locus o	f its
	centre is a straight	line. If the distance of	f this straight line from the o	origin is 25, then a^2 is	
	1) 250	2) 225	3) 100	4) 25	
64.	The number of con	nmon tangents to the	circles $x^2 + y^2 - 8x + 2y = 0$	and $x^2 + y^2 - 2x - 16y + 25$	=0 is
	1) 1	2) 2	3) 3	4) 4	
65.	If the circle $x^2 + y^2$	$^{2} + 4x - 6y + c = 0$ bise	ects the circumference of th	e circle $x^2 + y^2 - 6x + 4y - 1$	12 = 0
	then c is				
	1) 16	2) 24	3) -42	4) -62	
66.	A circle of radius 4	, drawn on a chord of	f the parabola $y^2 = 8x$ as dis	ameter, touches the axis of t	he
	parabola. Then, the	e slope of the chord is			
	1)1/2	2) 3/4	3) 1	4) 2	
67.	If the lines $2x + 3y$	y + 12 = 0 and $x - y + 4$	k = 0 are conjugate with re	spect to the parabola $y^2 = 8$	x, then
	the value of K is				
	1)-3	2) 3	3) 2	4)-2	
68.	If the line $2x+5y = $ midpoint of AB is	=12 intersects the elip	pse $4x^2 + 5y^2 = 20$ in two c	listinct points A and B, then	the
	1) (0,1)	2) (1,2)	3) (1,0)	4) (2,1)	
69.	In an ellipse the dist	ance between the foci	is 6 and its minor axis is 8.	Then its eccentricity is	
	1)4/5	2) $1/\sqrt{52}$	3) 3/5	4) 1/2	
70.	The equation of the	chord joining two poi	nts (x_1, y_1) and (x_1, y_2) on	the rectangular hyperbola x	$y = c^2$ i
			$\frac{y}{-y_2} = 1$ 3) $\frac{x}{y_1 + y_2} + \frac{x}{x_1 - x_2}$	$\frac{y}{x_1 + x_2} = 1$ 4) $\frac{x}{y_1 - y_2} + \frac{y}{x_1 - x_2}$	=1
71.	The integral $\int (1+$	$\left(x-\frac{1}{x}\right)e^{x+\frac{1}{x}}dx$ is			
			3) $(x-1)e^{x+\frac{1}{x}}+c$	4) $x e^{x+\frac{1}{x}} + c$	
72.	If the integral $\int \frac{5}{\tan^2 x}$	$\frac{\tan x}{\sin x - 2} dx = x + a \log \sin x $	$\ln x - 2\cos x \Big + k \text{ then a is}$		
	1)1	2) 2	3) -1	4) -2	
73.	$\int \frac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x}$	dx =			

LEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

1)	$\frac{1}{2}$	sin	2x
----	---------------	-----	----

$$2) \frac{-1}{2} \sin 2x$$

3)
$$\frac{1}{2}\sin^2 2x$$

$$4) -\sin^2 x$$

74. If
$$\int_{-\infty}^{\infty} f(x)dx = \psi(x)$$
 then $\int_{-\infty}^{\infty} f(x^3)dx = 0$

1)
$$\frac{1}{3}x^3\psi(x^3) - \int x^2\psi(x^3)dx + c$$

3)
$$\frac{1}{2} \left[x^3 \psi(x^3) - \int x^2 \psi(x^3) dx \right] + c$$

2)
$$\frac{1}{3} \left[x^3 \psi(x^3) - \int x^3 \psi(x^3) dx \right] + c$$

4)
$$\frac{1}{3}x^3\psi(x^3) - 3\int x^3\psi(x^3)dx + c$$

75. If
$$I_1 = \int_0^1 2x^2 dx$$
, $I_2 = \int_0^1 2^{x^3} dx$, $I_3 = \int_1^2 2^{x^2} dx$ and $I_4 = \int_1^2 2^{x^3} dx$ then

1)
$$I_1 > I_2$$

2)
$$I_2 > I_1$$

3)
$$I_3 > I_4$$

4)None

$$76. \qquad \int\limits_{0}^{2} x^{2} \left[x \right] dx =$$

77. The area bounded by the curves
$$y = |x| - 1$$
 and $y = -|x| + 1$ is

33)
$$2\sqrt{2}$$

78. The differential equation of the family of parabolas with vertex at
$$(0,-1)$$
 and having axis along the y-axis is

1)
$$xv^1 + v + 1 = 0$$

2)
$$xy^1 - 2y - 2 = 0$$

3)
$$xy^1 - y - 1 = 0$$

1)
$$xy^1 + y + 1 = 0$$
 2) $xy^1 - 2y - 2 = 0$ 3) $xy^1 - y - 1 = 0$ 4) $yy^1 + 2xy + 1 = 0$

79. The solution of
$$\tan y \frac{dy}{dx} = \sin(x+y) + \sin(x-y)$$
 is

1)
$$\sec y = 2\cos x + c$$

2)
$$\sec y = -2\cos x + c$$

1)
$$\sec y = 2\cos x + c$$
 2) $\sec y = -2\cos x + c$ 3) $\tan y = -2\cos x + c$ 4) $\sec^2 y = -2\cos x + c$

80.
$$x^2y - x^3 \frac{dy}{dx} = y^4 \cos x \text{ then } x^3y^{-3} =$$

1)
$$\sin x$$

2)
$$2\sin x + c$$

3)
$$3\sin x + c$$

4)
$$3\cos x + c$$

PHYSICS

81. $\mu = A + \frac{B}{\lambda} + \frac{C}{\lambda}$ is dimensionally correct. The dimensions of A, B and C respectively. Where μ , A,B,C

are constant, λ is wave length of wave

- 1) no dimensions l, l^2 2) l^2 ,no dimensions, l 3) l, l^2 ,no dimensions 4) l ,no dimensions, l^2

82. If
$$\vec{P} = \hat{i} + 2\hat{j} + 6\hat{k}$$
 its direction cosines are

1)
$$\frac{1}{41}$$
, $\frac{2}{41}$ and $\frac{6}{41}$

2)
$$\frac{1}{\sqrt{41}}$$
 and $\frac{6}{\sqrt{41}}$

1)
$$\frac{1}{41}$$
, $\frac{2}{41}$ and $\frac{6}{41}$ 2) $\frac{1}{\sqrt{41}}$ and $\frac{6}{\sqrt{41}}$ 3) $\frac{3}{\sqrt{41}}$, $\frac{8}{\sqrt{41}}$ and $\frac{7}{\sqrt{41}}$ 4) 1,2 and 6

83. If
$$S_n = 2 + 0.4n$$
 find initial velocity and acceleration

- 2) 0.4 units
- 3) 2.1 units

- A missile is fired for maximum range with an initial velocity of $20ms^{-1}$, the range of the missile is 84. $(g = 10m/s^2)$

1) $Y_8 = 2Y_A$

KGCET - 2K25

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

1) 50 m	2) 60 Cm	3) 20 m	4) 40 m
A 60kg man is percentage ch	inside a lift which is nange in weight is	noving up with an acceler	ration of $2.45ms^{-2}$. The apparent
1) 20%	2) 25%	3) 50%	4) 75%
A force of 150	N produces an accelera	ation of $2ms^{-2}$ in a body	and a force of 200N produces an
acceleration o	f $3ms^{-2}$. The mass of the	he body and the coefficie	nt of kinetic friction are
1) $50kg:0.1$			4) 50kg: 0.2
	from rest and moves winds of its journey is	th uniform acceleration.	-
1) 1:8:27	· ·	,	4) 3:2:1
A plastic ball f 2.4S,then e=		9m rebounds number of t	imes. If total time for second collision is
1) 0.3	2) 0.4	3) 0.7	4) 0.6
			angular, acceleration $8rad / s^2$. The time
	<u>-</u>		
,	,	· · · · · · · · · · · · · · · · · · ·	4) 14 sec
	is		, it is rotated at the rate of 4701 pm. The
1) 110 watt	<i>=)</i> 100 m and	c) == 0	4) 300 watt
		-	
,			4) zero
*	,		4) 25 cm
For a body is S is	HM the velocity is give	en by the relation $v = \sqrt{1}$	$44-16x^2 ms^{-1}$. The maximum acceleration
1) $12m/s^2$	2) $16m/s^2$	3) $36m/s^2$	4) $48m/s^2$
The stress versu	s strain graphs for wire	es of two materials 'A' ar	nd B are as shown in the figure. If
Y_A and Y_B are the	he young's moduli of tl	ne materials, then	
	\uparrow A		
	A 60kg man is percentage ch 1) 20% A force of 150 acceleration of 1) $50kg:0.1$ A body starts of $1^{st}, 2^{nd}, 3^{rd}$ second 1) 1:8:27 A plastic ball of 2.4S, then e= 1) 0.3 A stationary what taken by it to of 1) 5.5 sec An electric more power of motor of 1) 110 watt Intensity of grad 1) Variable The displacement 1) 3 cm For a body is S is 1) $12m/s^2$ The stress versus	A 60kg man is inside a lift which is no percentage change in weight is 1) 20% 2) 25% A force of 150N produces an acceleration of $3ms^2$. The mass of the 1) $50kg:0.1$ 2) $25kg:0.1$ A body starts from rest and moves with $1^{st}, 2^{nd}, 3^{rd}$ seconds of its journey is 1) $1:8:27$ 2) $1:2:3$ A plastic ball falling from a height 4.9 2.4S, then e= 1) 0.3 2) 0.4 A stationary wheel starts rotating about taken by it to complete 77 rotations is 1) $5.5 \sec$ 2) $7 \sec$ An electric motor exerts a constant to power of motor is 1) $110 \sec$ 2) $150 \sec$ 10 watt 110 watt 2) $150 \sec$ 2) $150 \sec$ 10 watt 110 watt 2) $150 \sec$ 2) $150 \sec$ 10 watt 110 watt 2) $150 \sec$ 2) $150 \sec$ 11 watt 2) $150 \sec$ 3. Which is $10 \sec$ 2) $10 \sec$ 2) $10 \sec$ 2) $10 \sec$ 3. Which is $10 \sec$ 4. Which is $10 \sec$ 5. Which is $10 \sec$ 6. Which is $10 \sec$	A 60kg man is inside a lift which is moving up with an acceler percentage change in weight is 1) 20% 2) 25% 3) 50% A force of 150N produces an acceleration of $2ms^2$ in a body acceleration of $3ms^2$. The mass of the body and the coefficie 1) $50kg:0.1$ 2) $25kg:0.1$ 3) $50kg:0.5$ A body starts from rest and moves with uniform acceleration. 1st, 2nd, 3rd seconds of its journey is 1) $1:8:27$ 2) $1:2:3$ 3) $1:4:9$ A plastic ball falling from a height 4.9m rebounds number of to 2.4S, then e= 1) 0.3 2) 0.4 3) 0.7 A stationary wheel starts rotating about is own axis at uniform taken by it to complete 77 rotations is 1) $5.5 \sec$ 2) $7 \sec$ 3) $11 \sec$ An electric motor exerts a constant torque 5Nm on a fly wheel power of motor is 1) $110 \sec$ 3) $11 \sec$ An electric motor exerts a constant torque 5Nm on a fly wheel power of motor is 1) $110 \sec$ 3) $11 \sec$ 3) $11 \sec$ 3) $11 \sec$ 3) $11 \sec$ 4) $11 \sec$ 3) $11 \sec$ 3) $11 \sec$ 3) $11 \sec$ 4) $11 \sec$ 5) $11 \sec$ 5) $11 \sec$ 6) $11 \sec$ 7) $11 \sec$ 8) $11 \sec$ 9) $11 \sec$ 1) $11 \sec$ 1) $11 \sec$ 1) $11 \sec$ 2) $11 \sec$ 3) $11 \sec$ 3) $11 \sec$ 3) $11 \sec$ 4) $11 \sec$ 5) $11 \sec$ 1) $11 \sec$ 1) $11 \sec$ 2) $11 \sec$ 3) $11 \sec$ 3) $11 \sec$ 4) $11 \sec$ 5) $11 \sec$ 1) $11 \sec$ 1) $11 \sec$ 2) $11 \sec$ 3) $11 \sec$ 3) $11 \sec$ 4) $11 \sec$ 5) $11 \sec$ 1) $11 \sec$ 1) $11 \sec$ 2) $11 \sec$ 3) $11 \sec$ 4) $11 \sec$ 5) $11 \sec$ 5) $11 \sec$ 6) $11 \sec$ 1) $11 \sec$ 1) $11 \sec$ 1) $11 \sec$ 2) $11 \sec$ 3) $11 \sec$ 3) $11 \sec$ 4) $11 \sec$ 5) $11 \sec$ 5) $11 \sec$ 6) $11 \sec$ 1) $11 \sec$ 1) $11 \sec$ 1) $11 \sec$ 2) $11 \sec$ 3) $11 \sec$ 4) $11 \sec$ 5) $11 \sec$ 1) $11 \sec$ 1) $11 \sec$ 2) $11 \sec$ 3) $11 \sec$ 4) $11 \sec$ 5) $11 \sec$ 7) $11 \sec$ 8) $11 \sec$ 9) $11 \sec$ 1) $11 \sec$ 1) $11 \sec$ 1) $11 \sec$ 2) $11 \sec$ 3) $11 \sec$ 4) $11 \sec$ 5) $11 \sec$ 7) $11 \sec$ 8) $11 \sec$ 9) $11 \sec$ 1) $11 \sec$ 2) $11 \sec$ 3) $11 \sec$ 4) $11 \sec$ 5) $11 \sec$ 1) $11 \sec$ 1) $11 \sec$ 1) $11 \sec$ 2) $11 \sec$ 3) $11 \sec$ 4) $11 \sec$ 5) $11 \sec$ 6) $11 \sec$ 7) $11 \sec$ 8) $11 \sec$ 9) $11 \sec$ 1) 1

95. An incompressible liquid flows through a horizontal tube L,M,N as shown in the figure. Then the velocity 'V' of the liquid through the tube N is

 $2) Y_A = Y_B$

3) $Y_8 = 3Y_A$

 $4) Y_A = 3Y_B$

1) $1ms^{-1}$

times radius is

1)R/3

1) 65°

1) -50J

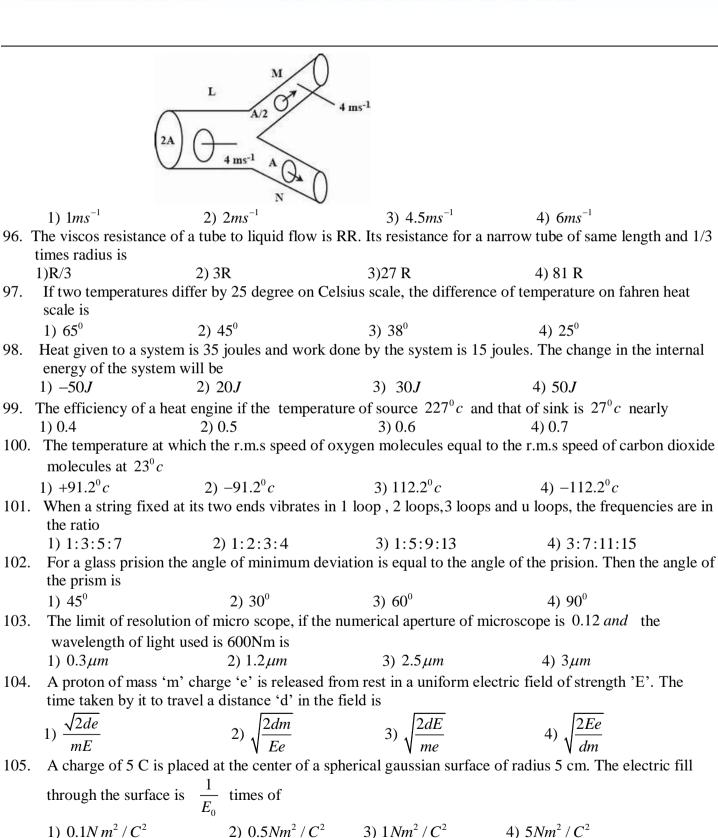
1) $+91.2^{\circ}c$

the ratio

1) 1:3:5:7

the prism is 1) 45°

1) $0.3 \mu m$

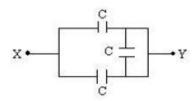

97.

98.

102.

105.

SRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS



106. The equivalent capacity between the points X and Y in the circuit with $C = 1\mu F$

CET - 2

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

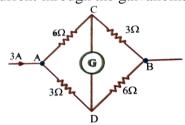
1) $2\mu F$

2) $3\mu F$

 $3) 1\mu F$

4) $05 \mu F$

107. The resistance of a wire is 2 Ω . If it is drawn in such a way that it experiences a longitudinal strain 200% Its new resistance is.


 $1)4\Omega$

 $2)8\Omega$

 $3) 16\Omega$

 $4)18\Omega$

108. In the given circuit current through the galvanometer is

1)zero

2) flows from C to D

3) flow from D to C

4) in sufficient information

109. Two equal resistance are connected in the gaps of a meter bridge. If the resistance in the left gap is increased by 10%, the balancing point shift

1) 10% to right 2) 10% to left

3) 9.6% to right

4) 4.8% to right

110. The magnetic induction at distance of 0.1 m from a strong magnetic pole of strength 1200 Am is

1) $12 \times 10^{-3} T$

2) $12 \times 10^{-4} T$

3) $1.2 \times 10^{-3} T$

4) $24 \times 10^{-3} T$

111. Two parallel conductors A and B separated by 5 cm any electric current of 6A and 2A in the same direction. The point between A and B where the field is zero at

1)0.25 cm from B

2) 1cm from B

3) 1.25cm from B

4) 3.75 cm from B

112. A cyclotron in which protons are accelerated has a flux density of 1.57T. The variation of frequency of electric field is (in Hz)

1) 4.8×10^8

2) 8.4×10^8

3) 2.5×10^7

4) 4.8×10^6

113. The peak voltage of 220volt AC mains(in volt) is

1) 155.6

2) 220.0

3) 311

4) 440.0

The de-Broglie wavelength of an electron and the wavelength of a photon are same. The ratio between the energy of the photon and the momentum of the electron is

2) C

4) 1/*C*

115. Find the frequency of revolution of the electron in the first stationary orbit of H- atom

1) $6 \times 10^{14} Hz$

2) $6.6 \times 10^{10} Hz$ 3) $6.6 \times 10^{-10} Hz$ 4) $6.6 \times 10^{15} Hz$

116. If a source of power 14KW produces 10²⁰ photons 1 second, the radiation belong to a part of the Spectrum called

1) X-rays

- 2) ultraviolet rays
- 3) Microwaves
- 4) r-rays
- 117. Energy released as mass of 2amu is converted into energy is

1) $1.5 \times 10^{-10} J$

- 2) $3 \times 10^{-10} J$
- 3) 1863*J*
- 4) 931.5MeV
- 118. The current gain of a common emitter amplifier is 69. If the emitter current is 7.0 mA, collector current

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

1) 0.69mA

2) 6.9mA

3) 69mA

4) 9.6mA

119.

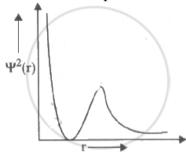
In the boolean algebra, the following one which is not equal to A is

2) A + A

120.

In an amplitude modulated wave for audio frequency of 500 cycle /second, the appropriate carrier frequency will be

1) 50cycles/second


2) 100cycles/second

3) 500cycles/second

4) 50000cycles/second

CHEMISTRY

121. The graph between variation of probability density $\psi^2(r)$ and distance of the electron from the nucleus, r is shown below. This represents

1)1s-orbital

2)2s-orbital

3)3s-orbital

4)4s-orbital

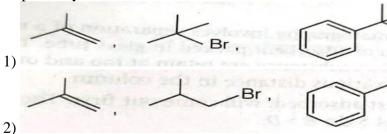
For the redox reaction $MnO_4^- + C_2O_4^{2-} + H^+ \rightarrow Mn^{2+} + CO_2 + H_2O$, the correct coefficient of the 122. reactants for the balanced reaction are respectively

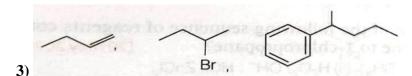
1) 2, 5, 16

2) 16, 3, 12

3) 15,16,12

4) 2,16,5

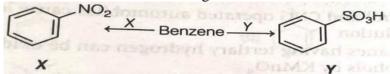

If the bond order in c_2 is 'x' then bond order in B_2 and O_2 , respectively are 123.


1) $\frac{1}{2}x, 2x$

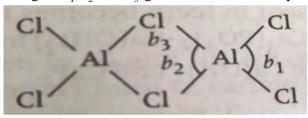
2) *x*, *x*

3) $\frac{1}{2}x, x$

124. An alkene $X(C_4H_6)$ on reaction with HBr gave $Y(C_4H_9Br)$. Reaction of Y with benzene in the presence of anhydrous gave Z which is resistant to oxidation with KMnO₄KOH. What are X,Y,Z respectively?



KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS


125. What are X and Y in the following reactions?

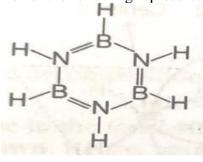
- 1) Conc.HNO₃
- $H_2SO_4(SO_3)$
- 2) $Conc.HNO_3 + Conc.H_2SO_4 / 333 K$
- $H_2SO_4(SO_3)$

- 3) *NaNO*₂ / *HCl*
- H_2SO_4

- 4) Dil.HNO₃
- SO_3
- 126. The bond angles b_1, b_2 and b_3 given structure are respectively(in 0)

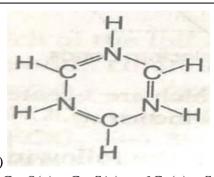
- 1) 79,101,118
- 2) 118,101,79
- 3)79,118,101
- 4) 118,79,101

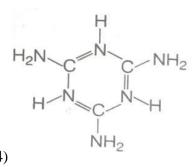
127. Match the following

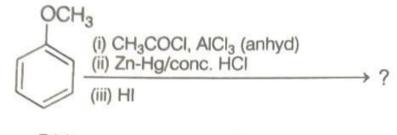

LIST I

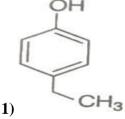
- A Carbon black
- B Graphite
- C. Diamond
- D. Activated charcoal

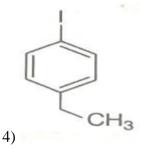
1) A-IV, B-III, C-II, D-V


3) A-V, B-I, C-III, D-II


- LIST II
- I. Electrodes in batteries
- II. Extraction of metals
- III. Abrasive
- IV. Filler in automobile tyres
- V. Air conditioning system
 - 2) A-III, B-I, C-II, D-IV
 - 4) A-IV, B-I, C-III, D-V
- 128. Which of the following represents the structure of inorganic benzene?




SRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS


- 129. $2Cu_2O(s) + Cu_2S(s) \rightarrow 6Cu(s) + SO_2(g)$ the oxidant and reductant respectively in the above reaction are
 - 1)Oxide of Cu_2O and sulphide of Cu_2S
- 2) Sulphide of Cu_2S and oxide of Cu_2O
- 3) Cu(l) of Cu_2O , Cu_2S and sulphide of Cu_2S
- 4)Cu(l) of Cu_2S , Cu(l) of Cu_2O
- 130. The Major product of the following reaction sequence is

CH₃

OH CH₃

- 131. Which of the following sets of reagents convert toluene to benzaldehyde?
 - A) $Cl_2 \mid hv; H_2O, \Delta$
- B) $KMnO_4 \mid OH^-; H^+$
- C) $Cl_2 \mid Fe; H_2O$
- D) $CrO_2Cl_2 \mid CS_2; H_3O^+$

- 1)B,C,D
- 2) A,C

2)

- 3) A.D
- 4) B.D
- 132. Under which of the following conditions E value of the cell, for the cell reaction given is maximum?

$$Zn(s) + Cu^{2+}(aq) \square \quad Cu(s) + Zn^{2+}(aq) \left(\frac{2.303rt}{F} at \ 298K = 0.059V, \\ E_{Zn^{2+}/Zn}^{0} = -0.76V, E_{Cu^{2+}/Cu}^{0} = +0.34V \right)$$

1) $C_1 = 0.1M, C_2 = 0.01M$

2) $C_1 = 0.01M, C_2 = 0.1M$

3) $C_1 = 0.1M, C_2 = 0.2M$

- 4) $C_1 = 0.2M$, $C_2 = 0.1M$
- 133. The validity of freundilich isotherm can be verified by plotting
 - 1) $\log \frac{x}{m}$ on y-axis and $\log p$ on x-axis

2) $\frac{x}{m}$ on y-axis and log p on x-axis

3) $\log \frac{x}{m}$ on x-axis and $\log p$ on y-axis

4) $\frac{x}{m}$ on x-axis and log p on y-axis

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

134.	In f-block elements	orbitals are	progressively	filled	by the electrons

1) 3l and 4l

2) 4l and 5l

3) 5l and 6l

4) 6l and 7l

135. Match the following based on valence bond theory

	Hybridisation		Geometry		Complex structure
A	sp^3	i.	Square planar	p.	$\left[Fe(CN)_{6}\right]^{3-}$
В	d^2sp^3	ii.	Tetrahedral	q.	$(ZnCl_4)^{2-}$
С	dsp^2	iii	Octahedral	r.	$\left[\left(Ni(NH_3)_4\right]^{2+}\right]$
				S.	$[Ag(CN)_2]^-$

1)
$$(A-ii-q), (B-iii-p), (C-i-r)$$

2)
$$(A-ii-q), (B-iii-r), (C-i-s)$$

3)
$$(A-i-q), (B-iii-p), (C-ii-r)$$

4)
$$(A-ii-r), (B-iii-s), (C-i-q)$$

136. At T(K) the equilibrium constant for the reaction $aA(g) \Box bB(g)$ is K_c . If the reaction takes place in the following form $2aA(g) \square 2bB(g)$, its equilibrium constant is K^1 . The correct relation ship between K_c and K_c^1 is

1)
$$K_{a}^{1} = (K_{a})^{2}$$

2)
$$K_c^1 = (K_c)^{1/2}$$

3)
$$K_c^1 = (K_c)^{-1}$$
 4) $K_c^1 = K_c$

4)
$$K_{c}^{1} = K_{c}$$

The crystal structure of an element has fcc lattice. If the edge length of the crystal is 4 A . What is the atomic weight of the element. If the density of the crystal is 11.21g cm^3 ($N_A = 6.023 \times 10^{23} \text{mol}^{-1}$) 1)63.5 2) 85.5 3)108.0 4)197.0

In water, which of the following gases has the highest Henry's law constant at 293K? 138.

1) *N*₂

2) O_{2}

3) He

139. For a first order reaction the concentration of reactant was reduced from $0.03molL^{-1}$ to $0.02molL^{-1}$ in 25min. What is the rate($(in \ mol L^{-1})$?

1) 6.667×10^{-6}

 $2) 4 \times 10^{-4}$

3) 6.667×10^{-4}

 $4)4\times10^{-6}$

140. Compounds A and B react according to the equation $2A(g) + B(g) \rightarrow 2C(g) + D(g)$. The initial rate of formation was determined at different initial concentrations of A and B. The following results were obtained. The rate law for this reaction may be ------

Exp. No	Initial(A)	Initial(B)	Initial rate of formation of C
1	0.1	0.1	6×10 ⁻³
2	0.3	0.2	7.2×10 ⁻²
3	0.3	0.4	2.88×10 ⁻¹
4	0.4	0.1	2.4×10^{-2}

1)
$$Rate = k[A]^2[B]$$

2)
$$Rate = k[A][B]$$

3)
$$Rate = k[A][B]$$

1)
$$Rate = k[A]^2[B]$$
 2) $Rate = k[A][B]^2$ 3) $Rate = k[A][B]$ 4) $Rate = k[A]^2[B]^0$

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

141. Identify A and B is the following reactions

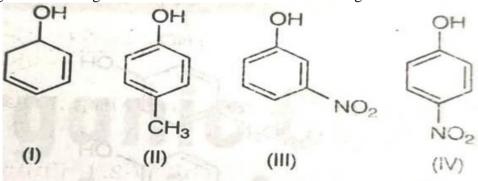
142. Identify B in the given reaction sequence

$$A \xrightarrow{\text{MgBr}} A \xrightarrow{\text{H}_3O^+} B$$

$$A \xrightarrow{\text{MgBr}} A \xrightarrow{\text{H}_3O^+} B$$

$$A \xrightarrow{\text{MgBr}} A \xrightarrow{$$

143. Identify 'X' in the following reaction


$$X' \xrightarrow{\text{(ii) } O_3} 2 \longrightarrow 0$$

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

1)
$$\longrightarrow$$
 CH $=$ CH $=$

144. Arrange the following in the correct order of their acidic strength

1) III > IV > I > II

2) IV > III > I > II

3) II > I > III > IV 4) I > IV > III > II

145. Which of the following polymer is biodegradable?

1)Nylon-6,6

2)Nylon-2-nylon-6

3) Mealamine polymer 4)Nylon-6

1)11101

146. Which of the following structure of proteins represents its constitution?

1)Secondary structure

2)Quatermary structure

3)Primary structure

4)Tertiary structure

147. Match the following

List-I	List-II
A. Beri-Beri	I. Riboflavin
B. Scurvy	II. Thiamine
C. Cheilosis	III. Pyridoxine
D. Rickets	IV. Ascorbic acid
	V. Vitamin D

The correct answer is

1)
$$A-III, B-IV, C-III, D-V$$

2)
$$A - II, B - IV, C - I, D - V$$

3)
$$A-III, B-V, C-I, D-II$$

4)
$$A-III, B-V, C-IV, D-II$$

148. The mass % of carbon in $C_{57}H_{110}O_6$ is

1)57.96

2) 62.35

3) 73.45

4) 76.85

149. Consider the reactions

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

$$H_3C$$
 $C = CH_2 \xrightarrow{(1) O_3} X+Y$
 H_3C
 $(i) Dil.NaOH$
 Z

The IUPAC name of Z is

- 1)But-1-en-3-one 2)4-h
 - 2)4-hydroxybutan-2-one
- 3)But-3-en-2-one
- 4)1-hydroxybutan-3-one
- 150. In Kolbe's electrolysis of sodium propanoate, products formed at anode and cathode are respectively
 - 1) C_2H_6, H_2
- 2) C_3H_8, H_2
- 3) C_4H_{10}, H_2
- 4) $H_2, C_4 H_{10}$
- 151. Identify the major product formed from the following reaction

152. Match the following

	List I		List II
A	Resonance	i.	$C = C + H^{\oplus} \longrightarrow C - C$
В	Inductive effect	ii.	H — CH_2 — CH_2 \longleftrightarrow H CH_2 — CH_2
С	Electromeric effect	iii.	C_6H_6
D	Hyperconjugation	iv.	CH_3 Z \longrightarrow CH_3 $+$ Z
		v)	$CH_3 - CH_2 - CH_2Cl$

The correct answer is

CET – 2K

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

	\boldsymbol{A}	B	\boldsymbol{C}	D
1)	II	I	IV	III
2)	III	V	I	II
3)	I	III	II	IV

The spin only magnetic moments of the complexes $\left[Mn(CN)_6\right]^{3-}$ and $\left[Co(C_2O_4)_3\right]^{3-}$ are respectively 153.

1)2.84,0 BM

2) 0,0 BM

3) 0, 1.2 BM

4) 1, 2 BM

The products formed when borax dissolves in water is/are 154.

1) $NaOH, H_3BO_3$

2) $Na_2[B_4O_5(OH)_4]$

3) NaH, B_2O_3 4) $B_2H_6, NaOH$

155. Which statement about noble gases is not correct?

1) 'Xe' forms XeF_6 under suitable conditions

2)'Ar' is used in electric bulbs

3) The number of lone pair of electrons present on Xe in XeF_2 is 3

4) 'He' has the highest boiling point among all the noble gases

156. Which one of the following methods is used to prepare carbon monoxide on commercial scale?

1) Dehydration of formic acid with conc. H_2SO_4

2) Direct oxidation of C in limited supply of oxygen

- 3) Passing steam over hot cake
- 4) Heating lime stone
- 157. Match the following

List-I((process)	List_II(catalyst)
A. Ostwald's process	I. No
B. Lead chamber process	II. Fe
C. Deacon's Process	III. Rh
D.Haber's process	IV. CuCl ₂

1) A-IV,B-I,C-II,D-III

 $\overline{2) A-II.B-III.C-IV.D-I}$

3) A-III, B-I, C-IV, D-II

4) A-III, B-IV, C-I, D-II

The O-H bond length in H_2O in gas phase is 158.

1) 95.7 pm

2) 90.2 pm

3) 104.5pm

4) 115.5 pm

159. The set of amphoteric oxides among $ZnO,TIO_3,In_2O_3,B_2O_3,PbO,SnO_2$ is

1) ZnO,TIO_3,PbO

2) ZnO, SnO_2 , PbO

3) ZnO, In_2O_3 , SnO_2

4) ZnO, In_2O_3 , PbO

160. $A \rightarrow$ products, is a first order reaction. The time required to decompose A to half its initial amount is 60 minutes. The rate constant of the reaction is

1) 1.05×10^{-2}

2) 1.15×10^{-2}

3) 1.25×10^{-4}

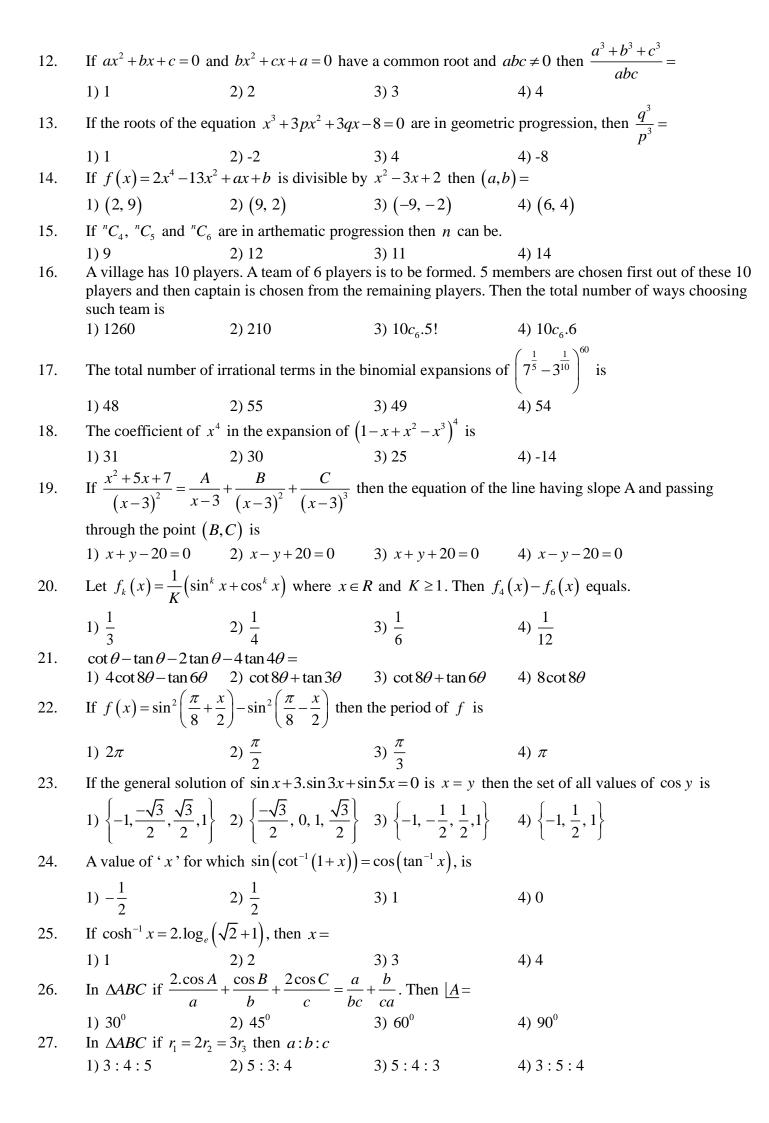
4) 1.92×10^{-4}

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

KEY SHEET

MATHS									
01	02	03	04	05	06	07	08	09	10
1	2	3	2	1	2	1	1	1	4
11	12	13	14	15	16	17	18	19	20
4	2	4	2	2	4	3	2	3	4
21	22	23	24	25	26	27	28	29	30
3	3	4	1	2	2	1	2	1	3
31	32	33	34	35	36	37	38	39	40
4	3	2	3	2	2	1	3	3	4
41	42	43	44	45	46	47	48	49	50
2	3	3	1	1	2	1	2	3	2
51	52	53	54	55	56	57	58	59	60
3	1	2	1	3	3	2	1	3	2
61	62	63	64	65	66	67	68	69	70
3	3	2	2	4	3	1	2	3	1
71	72	73	74	75	76	77	78	79	80
4	2	2	1	1	2	2	2	2	3
				PHY	SICS				
81	82	83.	84	85	86	87	88	89	90
4	2	1	4	2	1	3	3	3	3
91	92	93	94	95	96	97	98	99	100
4	3	4	4	4	4	4	2	1	2
101	102	103	104	105	106	107	108	109	110
2	3	4	2	4	1	4	3	4	1
111	112	113	114	115	116	117	118	119	120
3	3	3	2	4	1	2	2	3	4
CHEMISTRY									
121	122	123	124	125	126	127	128	129	130
2	1	3	1	2	4	4	1	3	1
131	132	133	134	135	136	137	138	139	140

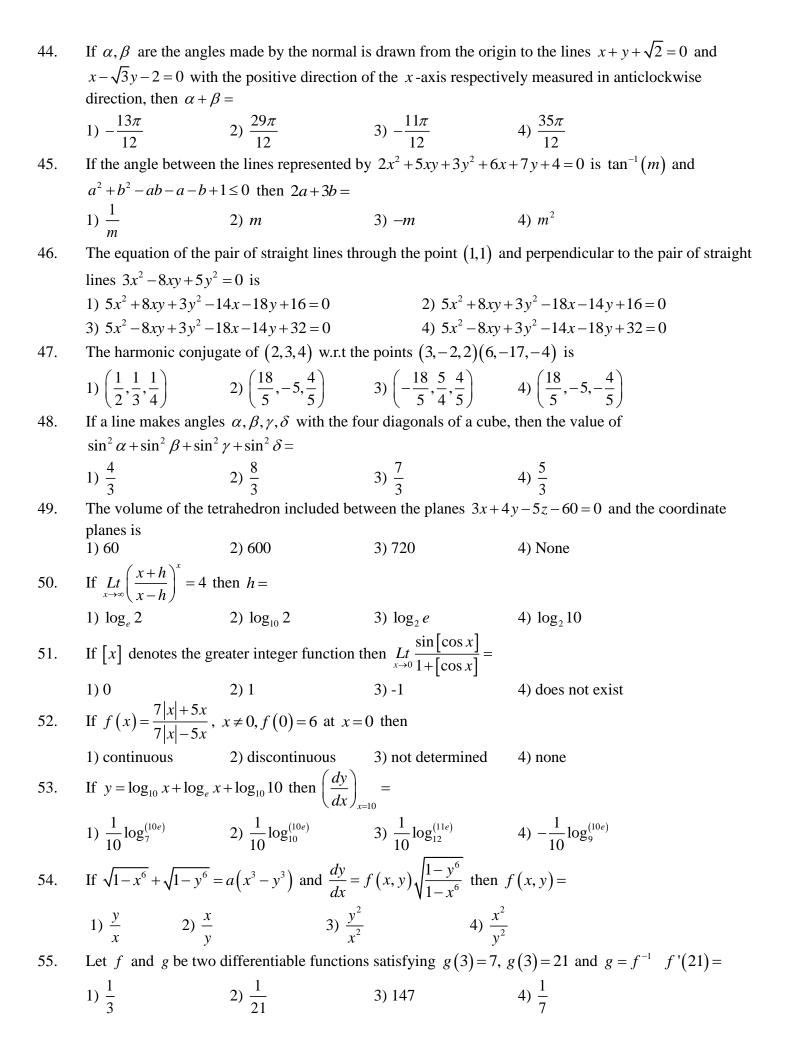
KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS


4	1	1	2	1	1	3	3	1	2
141	142	143	144	145	146	147	148	149	150
2	3	4	2	2	33	2	4	3	3
151	152	153	154	155	156	157	158	159	160
1	2	2	1	4	3	3	1	2	4

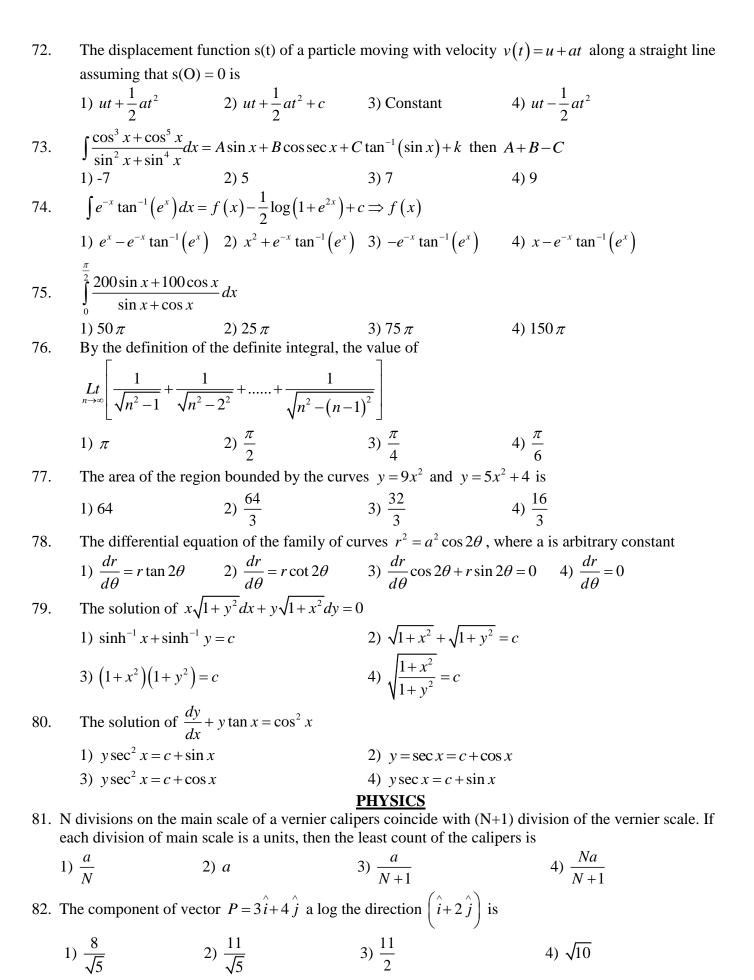
KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

		<u>M</u>	SET-2 IATHEMATICS	
1.	If $f: R \to R$ satisfies	s $f(x+y) = f(x) + f$	$(y) \forall x, y \in R \text{ and } f(1)$	1)=7 then $\sum_{r=1}^{n} f(r)$ is
	—	—	3) $\frac{7n}{2}$	
2.	Let $f(x) = 2^{10} \cdot x + 1$	and $g(x) = 3^{10}.x - 1$ if	f(fog)(x) = x then x	is equal to
	3 2	2 3	$3) \ \frac{1 - 3^{-10}}{2^{10} - 3^{-10}}$	4) $\frac{1-2^{-10}}{3^{10}-2^{-10}}$
3.	If $f(x) = 4^x - 2^{x+1} + 5$	5 then the range of f	is	
	1) $[4, \infty)$	$2)$ $(4, \infty)$	3) $(5, \infty)$	4) R
4.		A = P + Q, where P is	symmentric matrix and	d Q is skew symmentric matrix, then
	Q is $1) \begin{bmatrix} 0 & -2 \\ 2 & 0 \end{bmatrix}$	$2)\begin{bmatrix}0&2\\-2&0\end{bmatrix}$	$3)\begin{bmatrix}0 & -1\\1 & 0\end{bmatrix}$	$4) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
5.			fying $a^2 + b^2 + c^2 = 0$ a	and
	$\begin{vmatrix} b^2 + c^2 & ab & ab \\ ab & c^2 + a^2 & ab \\ ac & bc & a^2 \end{vmatrix}$	$\begin{vmatrix} ac \\ bc \\ +b^2 \end{vmatrix} = K.a^2b^2c^2$, then	K is equal to	
	1) 1	2) 2	3) 3	4) 4
6.		real numbers and if th		
				plution, then $ab+bc+ca$ equal
7.	1) $a+b+c$ $\frac{(1+i)^{2016}}{(1-i)^{2014}} =$	2) abc	3) 1	4) -1
	1) $-2i$	2) 2 <i>i</i>	3) 2	4) -2
8.	If z is a complex num	mber such that $ z+4 \ge$	≥ 3, then the smallest va	alue of $ z+3 $ is
	1) 3	2) 1	3) 2	4) 0
9.	If 1, ω , ω^2 are the cub		$\frac{1}{1+2\omega} + \frac{1}{2+\omega} - \frac{1}{1+\omega} =$	=
	1) 1	2) ω	3) ω^2	4) 0
10.	If $x_n = \cos\left(\frac{\pi}{2^n}\right) + i\sin\theta$	$n\left(\frac{\pi}{2^n}\right) \text{ then } x_1.x_2.x_3$	∞=	
	1) 1		3) -1	4) -2
11.	If α and β are roots	of the equation $x^2 + p$	$px + \frac{3P}{4} = 0 \text{ such that } e^{-\frac{3P}{4}} = 0$	$ \alpha - \beta = \sqrt{10}$ then P belongs to the set

1) {-2, 5} 2) {2, -5} 3) {-3, 2} 4) {3, -5}


28.	In $\triangle ABC$, $r.r_1 =$			
	1) $s(s-a)$	2) (s-b)(s-c)	3) (s-a)(s-b)	4) (s-c)(s-a)
29.	ABCDEF is a regula	ar hexagon whose centr	re is O. Then. $\overline{AB} + \overline{AC}$	$\overline{C} + \overline{AD} + \overline{AE} + \overline{AF}$ is
	1) $2\overline{AO}$	2) 3 AO	3) $5\overline{AO}$	4) $6\overline{AO}$
30.	If the vector $\overline{a} = 2\overline{i}$	$+3\overline{j} + 6\overline{k}$ and \overline{b} are co	ollinear and $ \overline{b} = 21$, the	nen \overline{b} =
	1) $\pm \left(2\overline{i} + 3\overline{j} + 6\overline{k}\right)$	$2) \pm 3\left(2\overline{i} + 3\overline{j} + 6\overline{k}\right)$	$3) \ \overline{i} + \overline{j} + \overline{k}$	4) $\pm 2\left(2\overline{i}+3\overline{j}+6\overline{k}\right)$
31.	If $\overline{a}, \overline{b}, \overline{c}$ are vectors	s such that $\overline{a} + \overline{b} + \overline{c} = 0$	$0, \overline{a} = 1, \overline{b} = 2, \overline{c} = 3$ t	then $\overline{a}.\overline{b} + \overline{b}.\overline{c} + \overline{c}.\overline{a} =$
	1) -7	_2) 0	3) 7	4) 1
32.	-	$\overline{b} = m\overline{i} + n\overline{j} + 12\overline{k}$ and	()	
	$1)\left(\frac{-24}{5}, \frac{-36}{5}\right)$	$2)\left(\frac{-24}{5}, \frac{36}{5}\right)$	$3)\left(\frac{24}{5}, \frac{-36}{5}\right)$	$4)\left(\frac{24}{5},\frac{36}{5}\right)$
33.			<u>_</u>	$\overline{i} + a\overline{j} + \overline{k}$, $\overline{j} + a\overline{k}$ and $a\overline{i} + \overline{k}$ is
	$1) \frac{1}{3\sqrt{3}}$	2) $\frac{1}{\sqrt{3}}$	3) $\frac{3\sqrt{3}-2}{3\sqrt{3}}$	4) $\frac{3\sqrt{3}+2}{3\sqrt{3}}$
34.	If the variance of 1,	2, 3,10 is $\frac{99}{12}$ the	en the standard deviation	on of 3, 6, 9, 1230 is.
	297	3 /22	2 3 5	$3\sqrt{3}$
	1) $\frac{297}{4}$	2) $\frac{3}{2}\sqrt{33}$	3) $-\sqrt{99}$	4) $\frac{1}{2}$
35.				$1, \dots$ is 125, then $n = \frac{1}{2}$
36.	1) 24 A coin is tossed 3 times	2) 30 mes. The probability of	3) 36 getting head and tail a	4) 18 lternately.
	1) $\frac{1}{6}$		3) $\frac{1}{4}$	4) $\frac{1}{2}$
	U	O	•	3
37.	Four person can hit a	a target correctly with p	probabilities is $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$	and $\frac{1}{8}$ respectively. If all hit at the
	• •	, then the probability th	•	
	1) $\frac{25}{32}$	2) $\frac{25}{192}$	3) $\frac{1}{10}$	4) $\frac{1}{11}$
38.	A and B are two ever	nts such that $P(A) = 0$	1.58P(B) = 0.32 and B	$P(A \cap B) = 0.28$. Then the probability
	that neither A nor B		()	
	1) 0.9	2) 0.38	3) 0.62	4) 0.72
39.	If the probability fun	nction of a random varia	able X is given by $P($	$X = K = \frac{3^{-\kappa}}{K!}$ for
	$K = 1, 2, 3, \dots$ (Wh	here c is a constant), th	c =	 '
	$1) \frac{1}{2} \log_3 \left(\log_e^2 \right)$	$2) \frac{1}{2} \log_2 \left(\log_e^3 \right)$	$3) \log_3(\log_e^2)$	$4) \frac{1}{2} \log_2 \left(\log_e^3 \right)$
40.	If X is a Poisson var	riate and $P(X=1)=2$	P(X=2) then $P(X=$	=3)=
	1) $\frac{e^{-1}}{6}$	2) $\frac{e^{-2}}{2}$	3) $\frac{e^{-1}}{}$	4) $\frac{e^{-1}}{}$
	6	2	2	3
41.	The locus of a point	which is collinear with	THEMATICS-B the points (3.4) and	(-4 3) is
11.		2) $2x + 3y + 12 = 0$, ,	
42.				changes to $y^2 = 4ax$ then $a =$
-	1) 1	2) 2	3) -2	4) -1
43.	,	,	,	pectively, then the line L cuts CA In

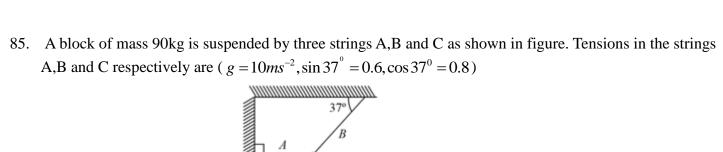
3) 10:7

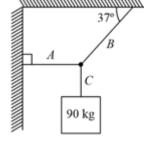

4) 10 : -7

1) 7:10

2) 7 : -10

83. The velocity of particle is given by $v = 2t^2 - 8t + 15ms^{-1}$. Find its instantaneous acceleration at t=5s 1) $18ms^{-2}$ 2) $20ms^{-2}$ 3) $5ms^{-2}$ 4) $12ms^{-2}$

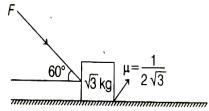

84. A projectile is launched from the ground such that it hits a target on the ground which is 90m away. The minimum velocity of projectile to hit the target is (acceleration due to gravity = $10ms^{-2}$)


1) $10ms^{-1}$

2) $16ms^{-1}$

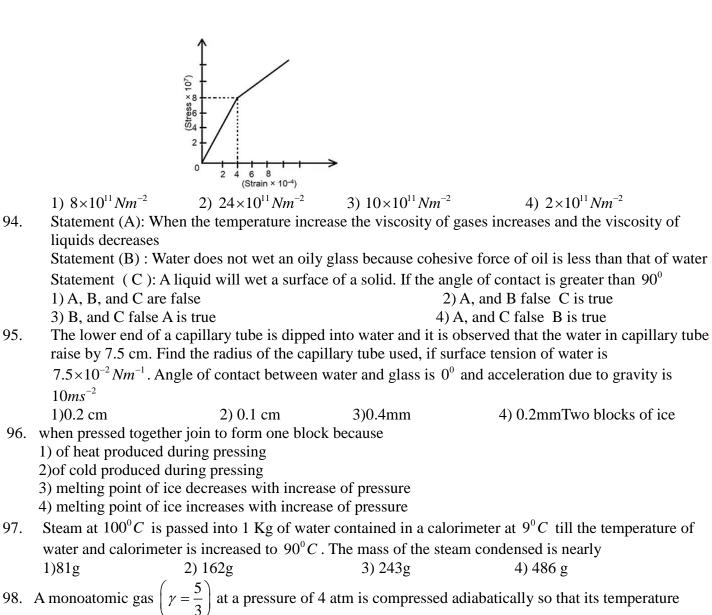
3) $60ms^{-1}$

4) $30ms^{-1}$



1)400N,500N and 300N 3) 300N,600N and 900N 2)500N,300N and 900N

4)1200N,1500N and 900N


The maximum value of the applied force F such that the block as shown in the arrangement does not move is (acceleration due to gravity, $g = 10ms^{-2}$)

- 1) 20 N
- 2) 15 N
- 3) 25 N
- 4) 10 N
- When the mass and speed of the body are doubled, the kinetic energy of the body 87.
 - 1)becomes double
- 2) becomes four times
- 3) becomes eight times 4) remains unchanged
- A bullet of mass m and velocity v when fired at a sand bag of mass M, suspended by a string gets 88. embedded into the bag. The loss of kinetic energy in this process is
 - 1) $\frac{mv^2}{2}$
- $2) \ \frac{mv^2}{2(M+m)}$
- 3) $\frac{Mv^2}{2}$ 4) $\frac{mMv^2}{2(M+m)}$
- 89. The moment of inertia of a thin rod of mass M and length L about an axis passing through a point at a distance $\frac{L}{4}$ from its centre and perpendicular to its length is
- 2) $\frac{ML^2}{48}$
- 3) $\frac{ML^2}{12}$ 4) $\frac{7ML^2}{48}$
- 90. A solid cylinder of radius R is at rest at a height h on an inclined plane. If it rolls down then its velocity on reaching the ground is
- 2) $\sqrt{\frac{2h}{3g}}$
- 3) $\sqrt{\frac{2gh}{3}}$ 4) $\sqrt{\frac{4gh}{3}}$
- A simple harmonic oscillation is represented by $x = A\cos\left(wt + \frac{\pi}{4}\right)$. Its speed is maximum when t 91. equals
 - 1) $\frac{\pi}{2\omega}$

- $2) \frac{\pi}{4\omega} \qquad \qquad 3) \frac{\pi}{\omega} \qquad \qquad 4) \frac{2\pi}{\omega}$
- An object is thrown directly away from the surface of the earth with an initial speed v. The object 92. reaches up to a height of $\frac{4}{5}R_E$ from earth's surface, where R_E is radius of the earth. If the escape velocity of the object is v_E then the value of $\frac{v}{v_E}$ is

- 3) 2/3
- Find the young's modulus of the wire whose stress-strain curve is as shown in the following figure 93.

3) $2^{\frac{5}{2}}atm$

3) 500K

3) 2.5×10^{-4} cm

3) $0.51ms^{-1}$

4) 350 K

4) 11

A carnot engine whose heat sink is at $27^{\circ}C$ has an efficiency of 40% By how much should its source

100. For a molecule of an ideal gas, the number density is $2\sqrt{2} \times 10^8 cm^{-3}$ and the mean free path is $\frac{10^{-2}}{\pi}$ cm.

101. A string of length 1m and mass 490 g is put under a tension of 25 N, a wave of frequency 120 Hz is sent

103. In a compound microscope, the focal lengths of two lenses are 1.5cm and 6.25 cm. An object is placed at 2cm from the objective and the final image is formed at 25 cm from the eye lens. The distance

3) 9.25

102. Assertion (A): The focal length of lens does not change when red light is replaced by blue light.

Reason (R): The focal length of lens does non depend on colour of light used

94.

95.

97.

 $10ms^{-2}$

1) $2^{\frac{1}{3}}atm$

1) 250K

1) $5 \times 10^{-4} cm$

1) $7.14ms^{-1}$

1)6

3) A is true, R is false 4) both are false

1)0.2 cm

pressure of the gas in its final state is

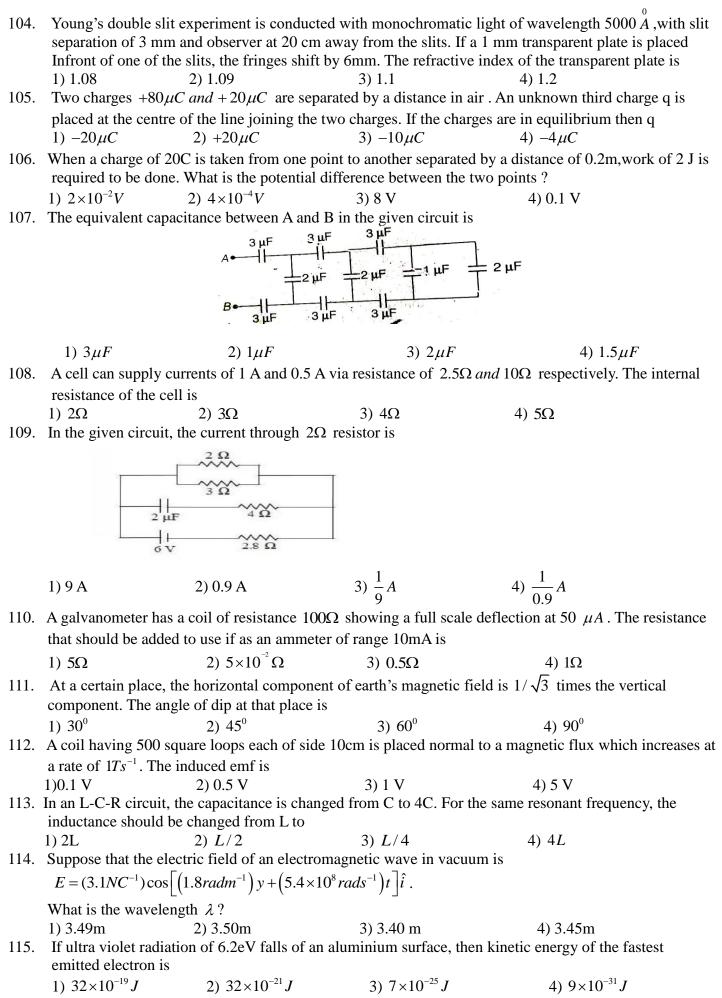
The diameter of the gas molecule is

along it. The speed of this wave is

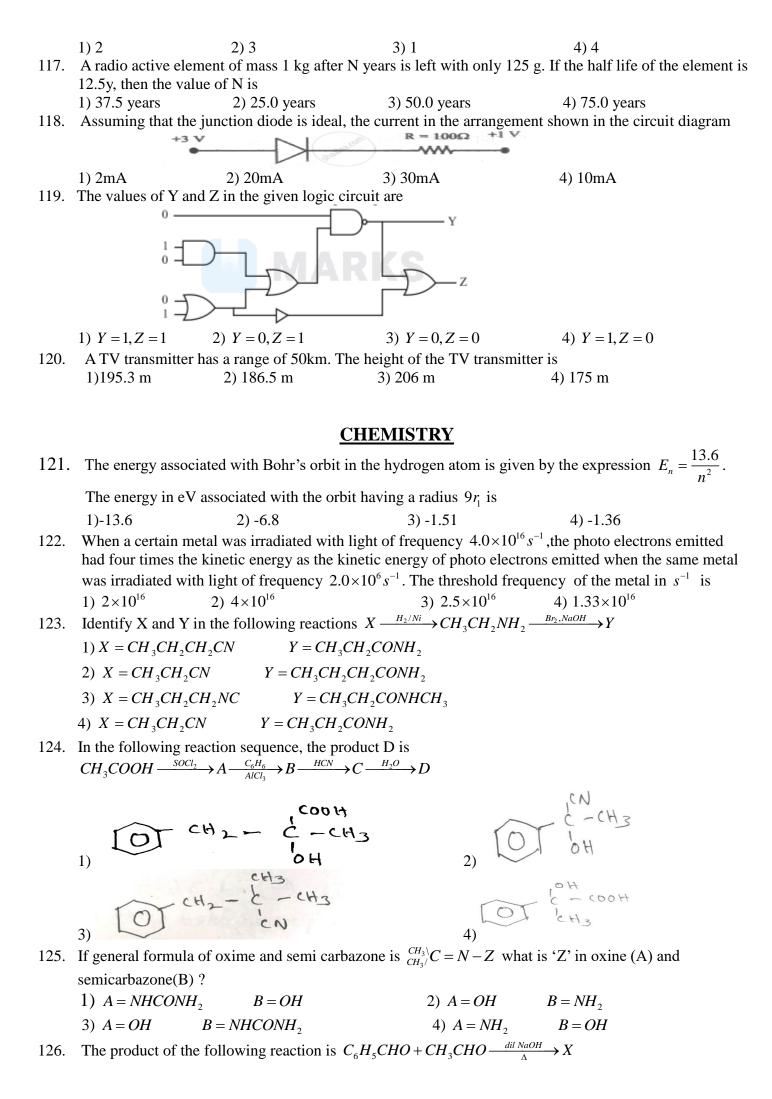
between the two lenses is -----(in cm)

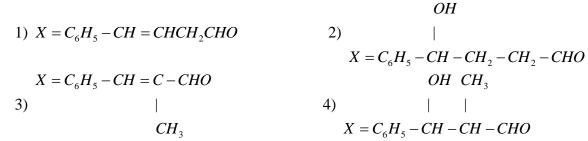
2) $2^{\frac{3}{3}}$ atm

2) 100K


2) $0.71ms^{-1}$

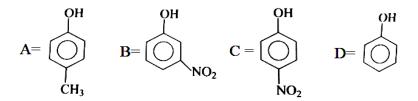
1) both are true and R is a correct explanation for A 2) both are true and R is a correct explanation for A


2) 7.75


temperature be changed, so as to increase its efficiency to 60%?

2) $0.5 \times 10^{-4} cm$

116. Ionization potential of hydrogen atom is 13.6 eV. When hydrogen atoms in ground state are excited by a supply of 12.1 eV, then the number of spectral lines emitted by hydrogen atoms according to Bohr's theory is



127. The major product obtained in the following reaction is

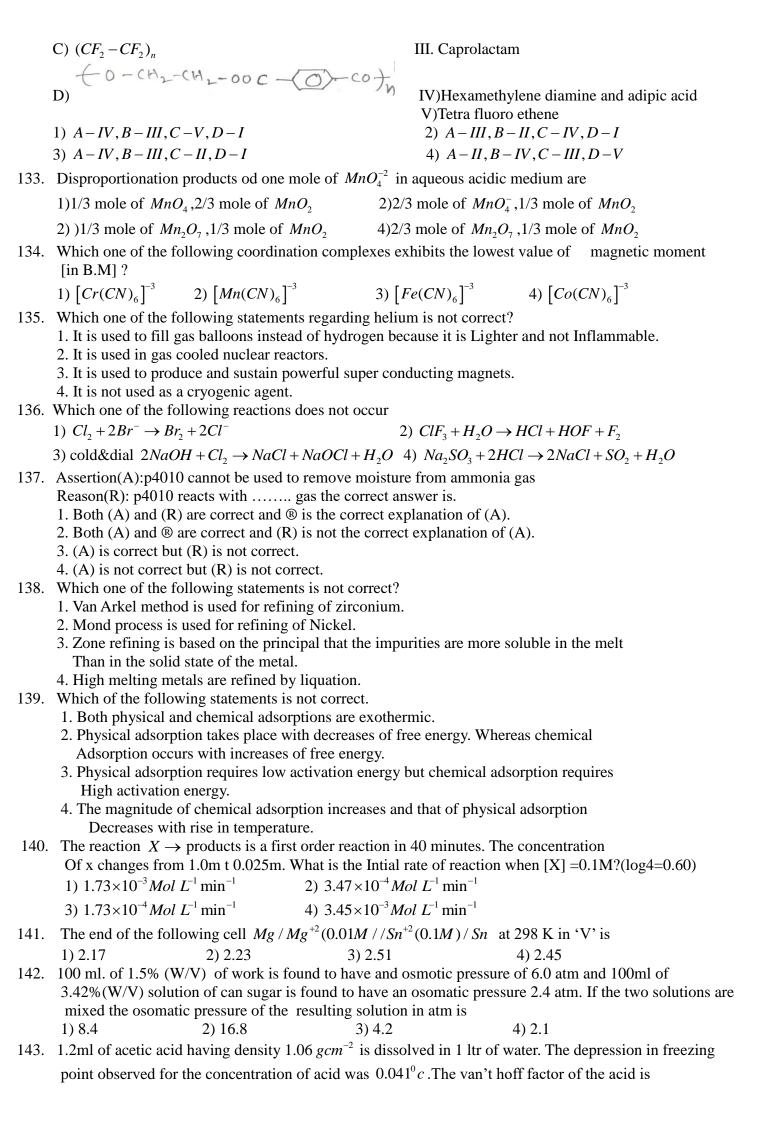
$$CH_{3} \\ | \\ C_{2}H_{5}ONa + CH_{3} - C - CI \rightarrow X \\ | \\ CH_{3} \\ | \\ CH_{3} \\ | \\ X = CH_{2} = C - CH_{3} \\ 2) \\ | \\ CH_{3} \\ | \\ CH_{$$

128. Arrange the following in increasing order of acid character

- 1) A < B < C < D
- 2) A < D < B < C
- 3) D < C < B < A
- 4) B < C < D < A

- 129. Which one of the following statements are correct?
 - a) The c-cl bond in chlorobenzene is shorter than in chloromethane
 - b) It is difficult to replace chloride from chlorobenzene than from benzyls chloride
 - c) The c-cl bond in chlorobenzene has some double bond character.
 - d) Chlorobenzene on chlorination gives m-di chlorobenzene
 - 1) A, B, C

- 2) A, D only
- 3)B, C, D
- 4)C, D ONLY

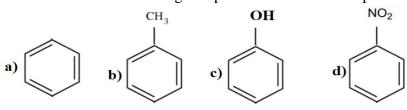

- 130. Which of the following is not analgesic?
- 1) Ofloxacin
- 2) Paracetamol
- 3)Morphine
- 4) Codeine
- 131. Which of the following statements about DNA is not correct?
 - 1) It has a double helix structure.
 - 2) Adenine form hydrogen bonds with thymine and cytosine form hydrogen bond with Guanine
 - 3) The two stand in a DNA molecule are not complementary to each other.
 - 4) It contain the pentose sugar, 2-deoxyribose.
- 132. Match the following

List I

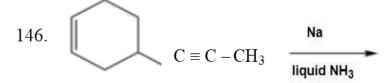
- A) $(NH + CH_2)_6 NH CO + CH_2 CO)_n$
- List II
 - I. Ethylene glycol and terephthalic acid

B) $(CO - (CH_2)_5 - NH)_n$

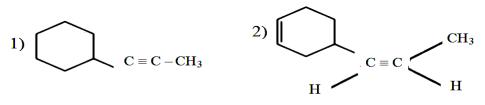
II. Phenol and formaldehyde

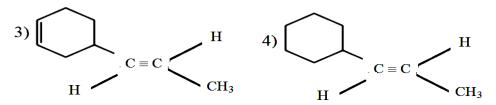


- 144. Which one of the following statements is not correct?
 - 1) Schottky defect in ionic solids doesnot change the density of the crystal
 - 2) Packing efficiency is the percentage of total space filled by the particles
 - 3) In body centered cubic unit cell, the relationship between atomic radius R and the edge length is


$$r = \frac{\sqrt{3}}{4}a$$

4)photovoltaic cell is used for conversion of light energy into electrical energy


145. The correct order of reactions of the following compounds towards electrophilic substitution reactions is



- 1) a > b > c > d
- 2) d > c > b > a
- 3) c > b > a > d
- 4) b > c > a > a

The product formed in the above reaction is

147. The stability order of the following resonance structures is

- 1) *III* < *II* < *I*
- 2) II > I > III
- 3) *II* < *I* < *III*
- 4) II > III > I
- 148. which one of the following statement is not correct?
 - 1. NO_2 is a Lung irritant.
 - 2. The municipal sewage has BOD value of 100-4000 PPM.
 - 3. Main source of co is automobile exhaust fumes.
 - 4. COD is the measure of bacteria in water.
- 149. Consider the following statements.
 - I. In diamond each carbon atom is sp3 hybridized.
 - II. Graphite has planer hexagonal layers of carbon atoms.
 - III. Silicones being surrounded by non polar alkyls groups are water repelling in nature.
 - IV. The order of catenation in group 14 Elements is Si > C > GE > Pb.
 - 1. I, II, III
- 2. II, III, IV
- 3. I, II, IV
- 4. I, III ,IV.

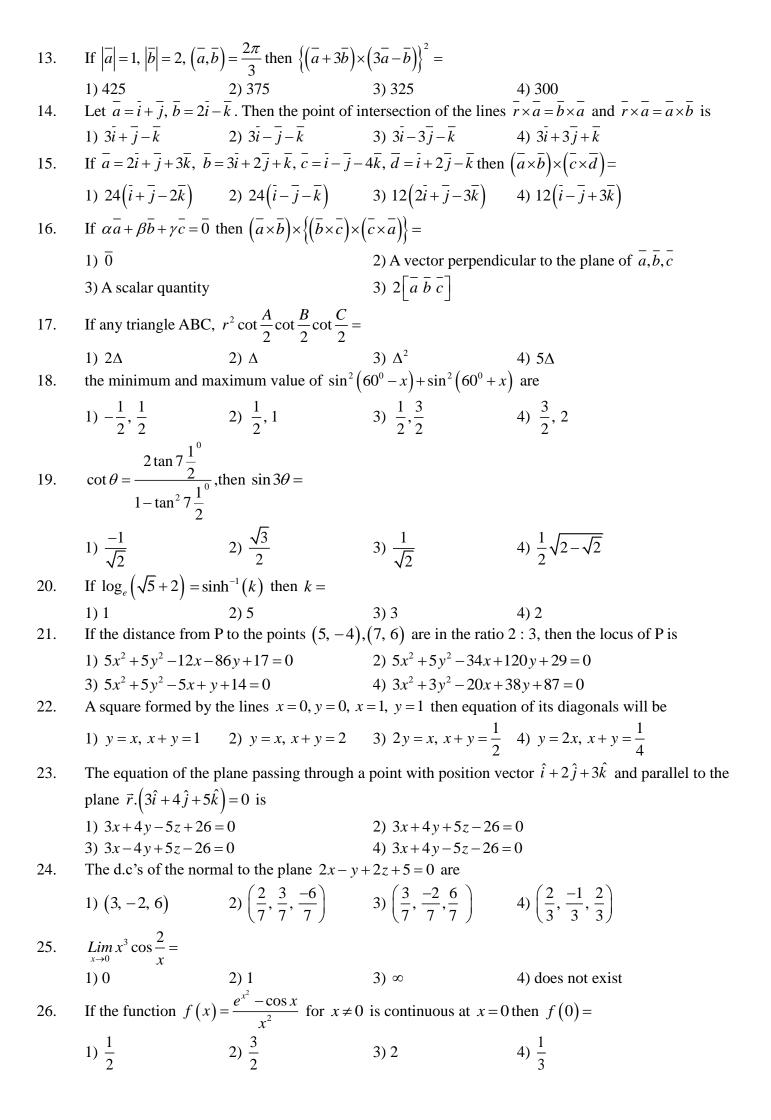
150. In the following reactions $B_2H_6 + NH_3(excess) \xrightarrow{\Delta} X + H_2, NaH + BF_3 \xrightarrow{450K} Y + NaF$

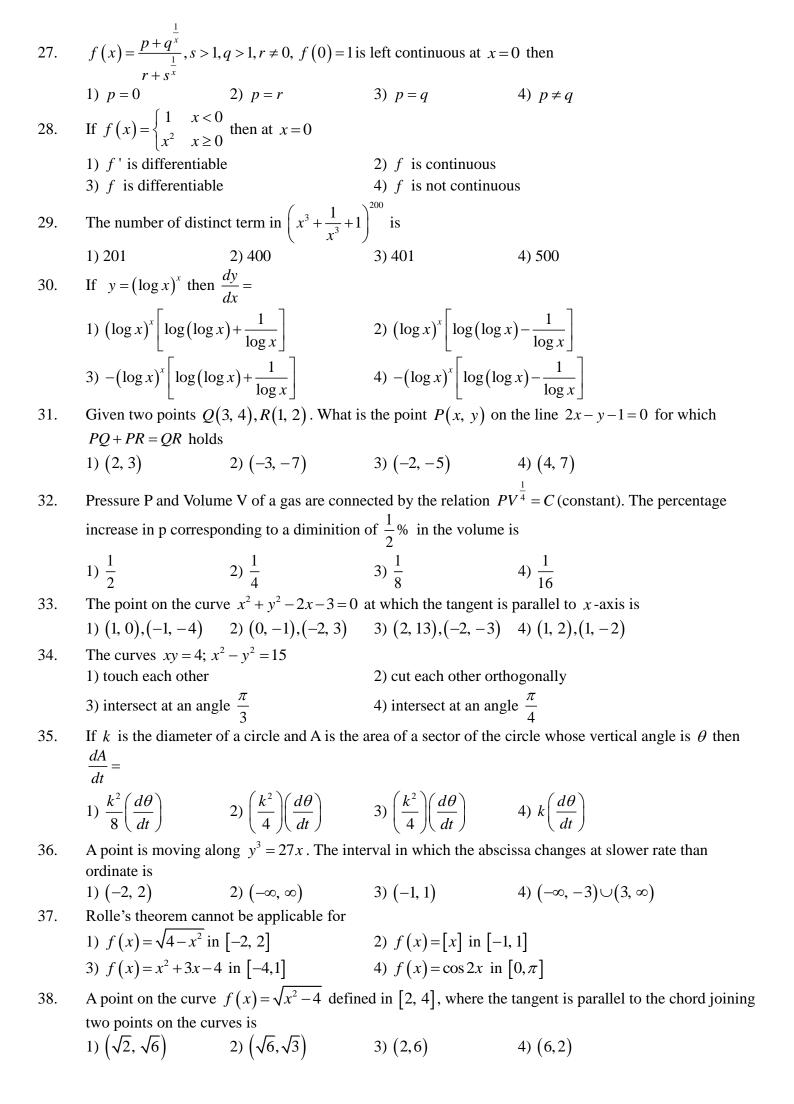
	$B_2H_6 + H_2O \longrightarrow$	$Z + H_2$ X,Y, and Z a	re respectively						
	1) B_2H_6 , $LiBH_2$, H	$(B_3BO_3 \ 2) \ B_3N_3H_6, B_2$	H_6, H_3BO_3 3) $(BN)_n, Li$	$BH_4, +HBO_2$ 4) B_2H_6, B_2H_6, HBO_2					
151.	Compound 'A' is prepared by the electrolysis of aqueous solution of 'B' using caster-Kellner anode								
	A and B respective	•	a)	A) N. GO NW					
	1)NAOH, NaCl		3) $NaHCO_3$, $NaOH$	4) Na_2CO_3, NH_3					
152.	Identify the correct		_						
	- 0		II) NH_3 is an electron in	-					
1.50	III) NaH is a covale	•	IV) <i>YbH</i> 2.5 is an interest						
153.			lution is [PKA of acetic a	then distributed to 100ml. with					
	1) 4.84	2) 5.21		4) 4.76					
154.	Observe the follow:		5) 1.5 1	.,, 6					
		$(NH_3)^{\dagger}, K_1 = 1.6 \times 1$	0^3						
	$\left[Ag(NH_3)\right]^+ + NH$	$\begin{bmatrix} Ag(NH_3)_2 \end{bmatrix}^+ K_2$	$_{2} = 6.8 \times 10^{3}$						
	The equilibrium co	onstant for the follow	ing reaction $Ag^+ + 2NH_3$	$ [Ag(NH_3)_2]^+ \text{ is} $					
	1) 6.008×10^3	2) 1.008×10^7	3) 1.088×10^6	4) 1.028×10^3					
155.	At 300k the equilib	orium constant for a r	eaction is 10. The standard	d free energy change (in $KJ Mol^{-1}$) for					
	the reaction is .								
	1) -57.4	2) -115.2	3) +57.4	,					
156.		nydrogen, 3.6g of an e formula of the oxide		2g of the metal. If the atomic weight of					
	1) M_2O_3	2) M_2O	3) MO	4) <i>MO</i> ₂					
157.	The ratio between	RMS velocities H2 a	t 50k and O_2 at 800k is.						
	1) 4:1	2) 2:1	3) 1:1	4) 1:4					
158.			reasing order of lone pair of						
	1) CO	2) NO_2^-	3) NF_3	4) CO_3^{-2}					
159.	are	d length with respect	to N-N and O-O when N2	2 becomes Andbecomes					
	respectively.		2) Daguagas, I						
	 Increasing, Decre Increases, Increase 		2) Decreases, I 4) Decreases, I						
160.			errect for classification of o						
			functions of their atomic						
			ber than the metallic elem						
		•	ents along a period do not	vary in a regular manner.					
	_	_	tion of pd [4) I II IV only					
	1) I, II, III, IV	2) I, II, III only	3) II, III, IV only	4) I, II, IV only					

KEY

MATHEMATICS

1	2	3	4	5	6	7	8	9	10
2	4	1	3	4	2	1	3	4	3
11	12	13	14	15	16	17	18	19	20
1	3	4	2	4	1	4	1	2	4
21	22	23	24	25	26	27	28	29	30
4	1	3	1	3	4	3	2	4	2
31	32	33	34	35	36	37	38	39	40
1	1	3	2	1	3	1	2	3	1
41	42	43	44	45	46	47	48	49	50
4	2	4	4	1	2	2	2	2	1
51	52	53	54	55	56	57	58	59	60
1	2	2	4	4	3	4	1	4	3
61	62	63	64	65	66	67	68	69	70
2	1	3	4	4	1	2	1	2	1
71	72	73	74	75	76	77	78	79	80
1	1	2	4	3	2	4	3	2	4

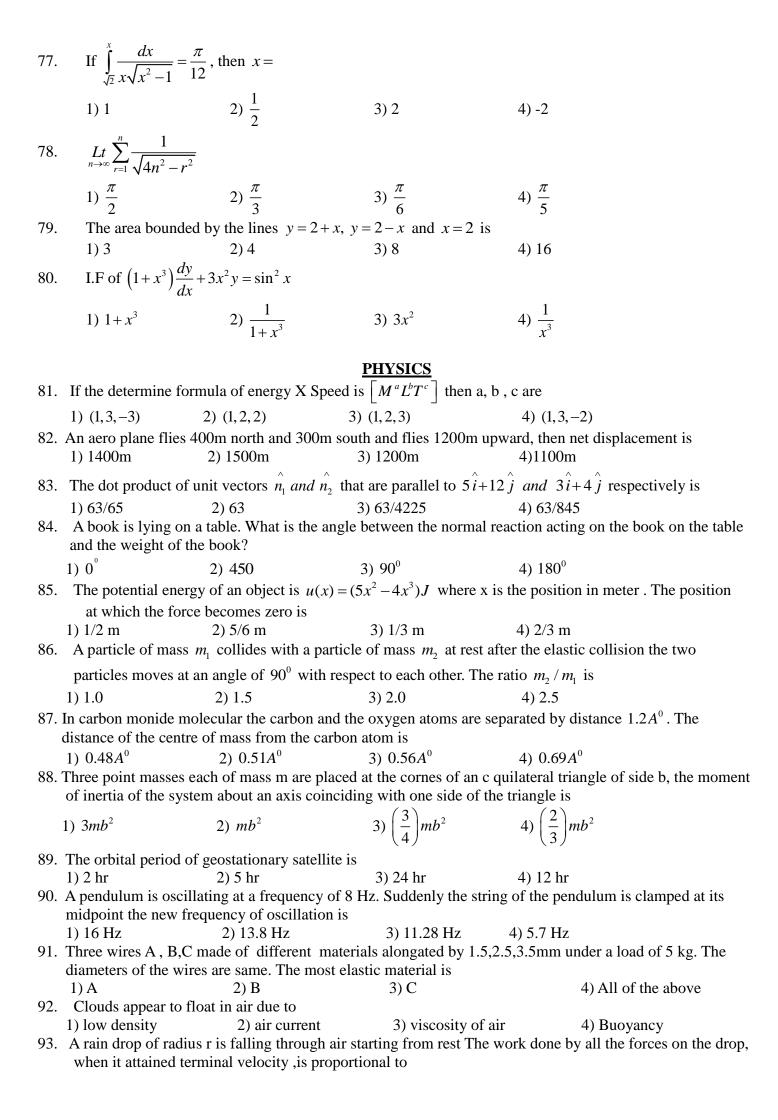

	PHYSICS								
81	82	83.	84	85	86	87	88	89	90
3	2	4	4	4	1	3	4	4	2
91	92	93	94	95	96	97	98	99	100
2	3	4	3	4	1	2	4	1	1
101	102	103	104	105	106	107	108	109	110
1	4	4	2	4	4	2	4	2	3
111	112	113	114	115	116	117	118	119	120
3	4	3	1	1	2	1	2	1	1
				CHEM	ISTRY				
121	122	123	124	125	126	127	128	129	130
3	4	2	4	3	3	2	2	1	1
131	132	133	134	135	136	137	138	139	140
3	1	2	4	4	2	1	4	2	4
141	142	143	144	145	146	147	148	149	150
2	3	2	1	3	3	1	4	1	2
151	152	153	154	155	156	157	158	159	160
1	3	4	2	4	2	3	4	1	2



KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

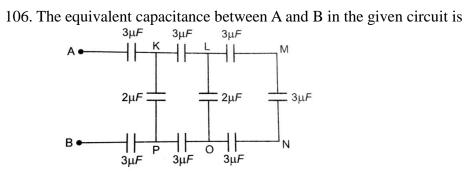
SET-3

]	MATHS	
1.	If $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ then A^{3}	5 =		
	1) I	2) O	3) A	4) A^2
2.	If x, y, z not all zeros	s and the equations $x +$	y + z = 0, $(1+a)x + (2a)x + (2a)x$	2+a)y-8z=0,
	x - (1+a)y + (2+a)	z = 0 have non-trivial	solution then $a =$	
	1) $2 + \sqrt{15}$	2) $3 \pm \sqrt{15}$	3) $\sqrt{15}$	4) $-5 \pm 2\sqrt{2}$
3.	Range of $\sqrt{9-x^2}$ is			
	1) [0, 3]	2) [-3,3]	3) [-3,0]	4) R
4.	If $f: R^+ \to R$ such the	hat $f(x) = \log_5 x$ then	$f^{-1}(x)=$	
	$1) \log_{x} 10$	2) 5 ^x	3) 3^{-x}	4) $3^{1/x}$
5.	If $\overline{AB} = (3, -2, 2), \overline{B}$	$\overline{BC} = (-1, 0, -2)$ are the	ne adjacent sides of a p	arallelogram, then the obtuse angle
	between its diagonals	is		
	1) $\frac{\pi}{4}$	2) $\frac{2\pi}{3}$	3) $\frac{\pi}{2}$	4) $\frac{3\pi}{4}$
6.	The locus of the point	3	given points a and b	4
		_	2) $\left[\left(\overline{r} - \frac{\overline{a} + \overline{b}}{2} \right) \cdot \left(\overline{a} + \frac{\overline{a} + \overline{b}}{2} \right) \right]$	_
	3) $\left[\left(\overline{r} - \frac{\overline{a} + \overline{b}}{2}\right) \cdot \left(\overline{a} - \frac{\overline{a} + \overline{b}}{2}\right)\right]$	$\left[\overline{b}\right] \cdot \left(\overline{a} + \overline{b}\right) = 0$	4) $\left[\left(\overline{r} - \frac{\overline{a} + \overline{b}}{2} \right) \cdot \left(\overline{a} - \frac{\overline{a} + \overline{b}}{2} \right) \right] \cdot \left(\overline{a} - \frac{\overline{a} + \overline{b}}{2} \right) \cdot \left(\overline{a} - \overline{a} - \overline{b} - \overline{b} \right) \cdot \left(\overline{a} - \overline{a} - \overline{b} - \overline{b} \right) \cdot \left(\overline{a} - \overline{b} - \overline{b} \right) \cdot \left(\overline{a} - \overline{b} - \overline{b} - \overline{b} - \overline{b} \right) \cdot \left(\overline{a} - \overline{b} - \overline{b} - \overline{b} - \overline{b} \right) \cdot \left(\overline{a} - \overline{b} - \overline$	$\left[\overline{b} \right] \left[\left(\overline{a} - \overline{b} \right) = 0 \right]$
7.	If $A = \begin{bmatrix} \alpha^2 & 5 \\ 5 & -\alpha \end{bmatrix}$ and	$\det(A^{10}) = 1024$ then	$\alpha =$	
	1) -2	2) -3	3) -1	4) 0
8.	In a $\triangle ABC$, $2ac \sin \frac{\pi}{2}$	$\frac{A-B+C}{2}=$		
		2) $c^2 + a^2 - b^2$	3) $b^2 - c^2 - a^2$	4) $c^2 - a^2 - b^2$
9.	$8\sin^2 x + 3\cos^2 x = 5$,		
	1) $\pm \frac{1}{\sqrt{2}}$		3) $\pm \sqrt{\frac{3}{2}}$	4) $\pm \sqrt{\frac{2}{3}}$
10.	$\cos 35^0 + \cos 85^0 + \cos$	$s155^0 =$		
	1) -1	2) 0	3) 1	4) 2
11.	The vector b which i	is collinear with the ve	ector $\overline{a} = (2, 1, -1)$ and	satisfies the relation $\bar{a}.\bar{b} = 3$ is
	$1)\left(1,\frac{1}{2},\frac{-1}{2}\right)$	$2)\left(\frac{2}{3},\frac{1}{3},\frac{-1}{3}\right)$	$3)\left(\frac{1}{2},\frac{1}{4},\frac{-1}{4}\right)$	4) (1,1,0)
12.	Angle between the pl	anes $x - y + z = 3$, $x +$	y + z = 4 is	
	1) $\cos^{-1}\frac{1}{3}$	2) $\cos^{-1}\frac{4}{41}$	3) $\sin^{-1}\frac{4}{27}$	4) $\sin^{-1}\frac{4}{41}$



39.	The function $f(x) = \sin^2 x \cos^3 x$ attains a maximum when $x =$				
	1) $\tan^{-1}\frac{2}{3}$	2) $\tan^{-1} \sqrt{\frac{2}{3}}$	3) $\tan^{-1} \frac{3}{2}$	4) $\tan^{-1} \sqrt{\frac{3}{2}}$	
40.		quation of a curve is 9 <i>X</i> nal equation of a curve		the axes are rotated through an angle	
	1) $25x^2 + 14xy + 25y$		$2) 25x^2 + 14xy - 25y$		
		$v^2 = 288$			
41.	If the roots of the qua	adratic equation $x^2 - 4$	$x - \log_3 a = 0$ are real,	then the least value of a is	
	1) 81	2) $\frac{1}{81}$	01	4) 9	
42.		of the equation $ x ^2 - 3$			
	1) 4	2) 2	3) 0	4) 1	
43.	($\equiv C : Arg\left(\frac{z-2}{z-6i}\right) = \frac{\pi}{2}$	lie on the curve which	n is a (where C denotes the set of all	
	complex numbers) 1) Circle	4.5	e 3) Parabola	4) Hyperbola	
44.	$4+5\left(-\frac{1}{2}+\frac{i\sqrt{3}}{2}\right)^{334}$	$+3\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right) =$			
		2) $-1+i\sqrt{3}$		4) $-i\sqrt{3}$	
45.	The biquadratic equa	ation, two of whose roo	ots are $1+i, 1-\sqrt{2}$ is		
	1) $x^4 - 4x^3 + 5x^2 - 2$	x - 2 = 0	2) $x^4 - 4x^3 - 5x^2 + 2x$	x + 2 = 0	
1.0	3) $x^4 + 4x^3 - 5x^2 + 2$		4) $x^4 + 4x^3 + 5x^2 - 2x$		
46.	` ′	of first type and odd o			
	1) $x-2$,	3) <i>x</i>	4) <i>x</i> +1	
47.				ficient of the 4 th term to the binomial	
	coefficient of the 3 rd	term is $\frac{10}{3}$, the 5 th term	n is		
	1) 55 <i>a</i>		3) $50a^2$	4) $55a^2$	
48.	The sum of the series	$s 1 + \frac{k}{3} + \frac{k(k+1)}{3.6} + \frac{k(k+1)}{3.6}$	$\frac{(k+1)(k+2)}{3.6.9}$ + is		
	$1)\left(\frac{2}{3}\right)^4$	$2)\left(\frac{3}{2}\right)^k$	3) $\frac{2}{3}$	4) $\frac{3}{2}$	
49.	If $\sum_{k=1}^{m} (k^2 + 1)k! = 199$	99(2000!), then <i>m</i> is			
50.	1) 1999 The sum of the value taken all at a time is	2) 2000 e of the digits at the ten	3) 2001 's place of all the numb	4) 2002 pers formed with the help of 3, 4, 5, 6	
	1) 1080	2) 4320	3) 360	4) 180	
51.	· ·	a plane are intersected	by n parallel lines the	en number of parallelograms formed	
	$1) \frac{m!n!}{\left(2!\right)^2}$		2) $\frac{m!n!}{(m-2)!(n-2)!}$		
	3) $\frac{m!n!}{(2!)^2(m-2)!(n-1)!}$	2)!	4) $\frac{(m+n)!}{(m+n2)!2!}$		
	() () (,			

52.	The number of odd p	roper positive divisors	of $3^a 6^b 21^c$ is $(a, b, c, 6)$	$\equiv N$)
	1) $(a+1)(b+1)(c+1)$)-2	2) $(a+b+c+1)(c+1)$	1)-1
	3) $(a+1)(b+1)(c+1)$)-1	4) $(a+1)(b+1)(c-1)$)
53.	$\frac{2x^3+1}{(x-1)(x+1)(x+2)}$	_		
<i>J</i> 3.	(x-1)(x+1)(x+2)	_		
	1) $2 + \frac{1}{2(x-1)} + \frac{1}{2(x-1)}$	5	2) $2 - \frac{1}{2(x-1)} - \frac{1}{2(x-1)}$	1 5
	() (/	() (,
	3) $2 + \frac{1}{2(x-1)} - \frac{1}{2(x-1)}$	$\frac{1}{+1} - \frac{5}{r+2}$	4) $\frac{1}{2(x-1)} + \frac{1}{2(x+1)}$	$\frac{1}{1} - \frac{5}{x+2}$
54.	, , ,	ng is not a measure of)
·	1) Variance	2)Mean deviation	3) Mode	4) Standard Deviation
55.	If $x_1, x_2,, x_n$ are r	a observations such that	at $\sum_{i=1}^{n} x_i^2 = 400$ and $\sum_{i=1}^{n}$	$x_i = 80$ then the least value of n is
<i>E.C.</i>	1) 12	2) 15	3) 16	4) 18
56.		numbers is less than 7		replacement. The probability that the
				31_{C_2}
	$1) \frac{1}{100_{C_2}}$	$\frac{2}{100_{C_2}}$	$3) \frac{31_{C_2}}{100_{C_2}}$	4) $1 - \frac{1}{100_{C_2}}$
57.		<u>=</u>	0.25 and 0.5 respective y that neither A nor B of 3) 0.19	ly. The probability that both A and B occurs is 4) 0.5
58.	· ·	$hich P(X=k) = CK^2$	can serve the probabil	ity function of a random variable X
	that takes values 0,1,	2, 3, 4 is		
	1) $\frac{1}{30}$	2) $\frac{1}{10}$	3) $\frac{1}{3}$	4) $\frac{1}{15}$
59.	The probability of a r	man hitting the target i	s $\frac{1}{4}$. If the fires 7 time	s the probability of his hitting the
	target aleast once is		4	
	$1)\left(\frac{3}{4}\right)^7$	2) $1 - \left(\frac{3}{4}\right)^7$	3) $\left(\frac{1}{2}\right)^7$	4) $1 - \left(\frac{1}{4}\right)^7$
	1)(4)	2) 1 (4)	3) (4)	4) 1 (4)
60.	If X is a poisson var	riate with parameter $\frac{3}{2}$, find $P(X \ge 2)$	
	1) $\frac{5}{2}e^{\frac{-3}{2}}$	2) $1 - \frac{5}{2}e^{\frac{-3}{2}}$	3) $1-e^{\frac{-3}{2}}$	4) $e^{\frac{-3}{2}}$
61.	If the two circles x^2	$+y^2 + 2gx + c = 0$ and	$x^2 + y^2 - 2fy - c = 0$ h	ave equal radius then locus of (g, f)
	is			
	, ·	, ,	3) $x - y^2 = c^2$	4) $x^2 + y^2 = 2c^2$
62.		fies which of the differ		
	ast ast	case case	cast cast	$4) \frac{dy^2}{dx^2} - \frac{dy}{dx} + 2y = 0$
63.	The slope of the radio	cal axis of the circles ($(x+2)^2 + (y+3)^2 = 25$	and $(x+1)^2 + (y-1)^2 = 25$ is
	1) $-\frac{1}{4}$	4	3) -4	4) $-\frac{1}{2}$
64.	orthogonally. Then the	ne length of their comn	non chord is	the centres is ' d ' cut each other
	$1) \frac{2rR}{\sqrt{r+R}}$	$2) \frac{rR}{\sqrt{r^2 + R^2}}$	$3) \frac{2rR}{\sqrt{r^2 + R^2}}$	$4) \frac{rR}{r^2 + R^2}$


65.	The focus and direct	rix of parabola are (1,2	2) and $2x-3y+1=0$.	Then the equation of the tangent at the		
	vertex is					
			3) $4x - 6y + 11 = 0$	4) $4x - 6y + 7 = 0$		
66.	Which of the following equations represents a parabola					
	$1) \left(x - y\right)^3 = 3$	$2) \frac{x}{y} - \frac{y}{x} = 0$	$3) \frac{x}{y} + \frac{4}{x} = 0$	4) $(x+y)^2 + 3 = 0$		
67.	If a chord $4y = 3x - $	$48 \mathrm{subtends}$ an angle $ heta $	at the vertex of the pa	arabola $y^2 = 64x$ then $\tan \theta$		
	1) $\frac{10}{9}$	2) $\frac{13}{9}$	3) $\frac{20}{9}$	4) $\frac{16}{}$		
	,	,	9	9		
68.	that $PA+PB = 8$ is			of the equation to the locus of P such		
	1) $\frac{x^2}{16} + \frac{y^2}{7} = 1$	$2) \frac{x^2}{16} + \frac{y^2}{9} = 1$	$3) \frac{x^2}{9} + \frac{y^2}{16} = 1$	4) $\frac{x^2}{12} + \frac{y^2}{21} = 1$		
69.	The distances from t	he foci to a points $P(x)$	(x_1, y_1) on the ellipse $\frac{x^2}{9}$	$\frac{y^2}{1} + \frac{y^2}{25} = 1$ are		
	4) $4 \pm \frac{2}{3} y_1$	2) $5 \pm \frac{4}{5} y_1$	3) $5 \pm \frac{4}{5} x_1$	4) $4 \pm \frac{2}{3} x_1$		
70.	The locus of point of	f intersection of perpen	ndicular tangents to the	ellipse $\frac{(x-1)^2}{16} + \frac{(y-2)^2}{9} = 1$ is		
	1) $(x-1)^2 + (y-2)^2$	= 25	2) $(x-1)^2 + (y-2)^2$	= 7		
	3) $(x+1)^2 + (y+2)^2$	= 25	4) $(x+1)^2 + (y+2)^2$	= 7		
71.		if the angle between the $+7y+4=0$ is $\tan^{-1} k$	he straight lines repres	ented by		
	3	2) $\frac{1}{5}$ only	3	4) 0		
72.	The points on the ell	ipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ whos	e eccentric angles diffe	er by a right angle are		
	1) $(5\cos\theta, 3\sin\theta), ($		2) $(5\cos\theta, 3\sin\theta)$, (
	3) $(5\cos\theta, -3\sin\theta)$	$,(5\sin\theta,3\cos\theta)$	4) $(25\cos\theta, -3\sin\theta)$	$(2), (5\sin\theta, 3\cos\theta)$		
73.	If the latusrectum of	a hyperbola subtends a	a right angle at its cent	re then its $e =$		
	1) $\frac{\sqrt{3}+1}{2}$	2) $\frac{\sqrt{7}+1}{2}$	3) $\frac{\sqrt{5}+1}{2}$	4) $\frac{\sqrt{5}}{2}$		
	$\frac{1}{2}$	$\frac{2}{2}$	$\frac{3}{2}$	$\frac{4}{2}$		
74.	Equation of one of the	ne tangents passing thre	ough $(2, 8)$ to the hyp	erbola $5x^2 - y^2 = 5$ is		
	1) $3x + y - 14 = 0$	2) $3x - y + 2 = 0$	3) $x + y + 3 = 0$	4) $x - y + 6 = 0$		
75.	$\int \frac{\cos x}{\cos 3x} dx =$					
	$1) \frac{1}{2\sqrt{3}} \log \left \frac{1 + \tan x}{1 - \tan x} \right $	+ <i>c</i>	2) $\frac{1}{2\sqrt{3}} \log \left \frac{1 + \sqrt{3} \tan x}{1 - \sqrt{3} \tan x} \right $	$\frac{ \mathbf{n} x }{ \mathbf{n} x } + c$		
	3) $\frac{1}{\sqrt{3}} \log \left \frac{1 + \sqrt{3} \tan}{1 - \sqrt{3} \tan} \right $	$\frac{x}{x} + c$	4) $\frac{2}{\sqrt{3}} \log \left \frac{1 - \sqrt{3} \tan}{1 + \sqrt{3} \tan} \right $	$\frac{x}{x} + c$		
76.	$\int x^{1/3} \left(2 + x^{2/3}\right)^{1/4} dx \text{ i}$	s equal to				
	1) $\frac{2}{3}(2+x^{2/3})^{9/4}+\frac{12}{5}$	$\frac{2}{c}(2+x^{2/3})^{5/4}+c$	2) $\frac{2}{3}(2+x^{2/3})^{9/4}-\frac{12}{5}$	$\frac{2}{c}(2+x^{2/3})^{5/4}+c$		
	3) $\frac{1}{3} (2 + x^{2/3})^{9/4} - \frac{12}{5}$	$(2+x^{2/3})^{5/4}+c$	4) $\frac{1}{3} (2 + x^{2/3})^{9/4} + \frac{12}{5}$	$\frac{2}{c}(2+x^{2/3})^{5/4}+c$		

	1) r^{3}	2) r^{7}	3) r^{5}	4) r^4
94.	surface energy neede	ed to double the diameter	er of the bubble is	ion of the soap film is T. The
	$1) 12\pi R^2 T$	*	- /	4) $24\pi R^2 T$
95.				he resultant temperature is
	1) $80^{\circ}C$	2) $55^{\circ}C$	<i>c</i>) =	4) $45^{\circ}C$
	1) remains unchange	ed 2) increase 3)dec		ature of the room will ontents inside the refrigerator ally. The heat given to the gas in this
	process is	,	r	, , , , , , , , , , , , , , , , , , ,
	1) 1050 J	2) 950 J	3) 600 J	4) 550 J
98.	Temperature of a co 20% then the temperature	ld reservoir of a Carnot erature of the hot reservo	engine is $127^{0}C$. If the epir is	fficiency of the Carnot engine is
	1) $500^{\circ}C$	2) $227^{\circ}C$	3) $273^{\circ}C$	4) $400^{\circ}C$
99.		ees of forcedown. Then		
	1) $\frac{n+2}{2}$	$2) \ \frac{2n+1}{n}$	3) $\left(\frac{n+2}{n}\right)$	$4) \ \frac{n+4}{2n}$
100			al frequency. One is filled their length respectively	d with oxygen and the other with is
	1) 1:4	2) 4:1	3) 1:2	4) 2:1
101	Then angle of refrac			to a medium of refractive index 1.
	1) 30°	$2) 60^{\circ}$	3) 45°	4) 90°
102	individually for an o	bject kept at the same d	istance from the lenses.	
	1) $\frac{m_1(1-m_1)}{m_1(1-m_1)}$	2) $\frac{m_1(m_2-1)}{m_1(m_2-1)}$	$3) \frac{m_2(1-m_1)}{m_1(1-m_2)}$	4) $\frac{m_2(1-m_2)}{m_2(1-m_2)}$
103	. In a young's double			$m_1(1-m_1)$ wave length of light used then the
	1) 2	2) 3	3)5	4)7
104	<u> </u>		=	the x-axis enters a uniform electric
			ll be the trajectory of the	particle?
	1) circular	2) Elliptical	3) parabolic	4) Helical
105			ne fig. If each capacitor is	9PF, then the effective capacitors
	between the points A	A and B is C_1		

3) 20 PF

4) 5 PF

2) 15 PF

1)10 PF

1) 3 μF	2) 1 μF	3) 2 μF	4) 1.5 μF
107. A cell can supply curren resistance of the cell is.	t of 1A and 0.5A via	a resistances of 2.5 \$\mathcal{Q}\$	Ω 10 Ω respectively. The internal
1)2 Ω 2)3 Ω	4	3) 4 Ω	4) 5 Ω
108. Balancing point of a pot 40m resistance what is the		_	n to 40 cm by shunting the cell with a
1) 1 Ω 2) 2 9	Ω	3) 4 Ω	4) 6 Ω
109. A charged particle mov	es through a magnet	ic field perpendicula	r to its direction then
1) Kinetic energy chang			
2) The momentum chan	ges but the kinetic E	Energy is constant.	
3) Both momentum and	Kinetic energy of t	he particles are not c	constant.
4) Both momentum and	kinetic energy of the	ne particles are const	ant.
110. A voltmeter of 250 mv r	ange has a resistanc	e of 10 Ω is convert	ted into an ammeter of 250 mA range.
The value of necessary			
1)2 Ω 2) 0.1 9		3) 1 Ω	
	_	in 0.1 sec. in coil of	self-inductance of 8mH. The
emf induced in the coil i			
1) 16V 2) 1.6	$\times 10^{-2} V$ 3	3) $16 \times 10^{-2} V$	4) 2 V
112. The reactance of an indu	actor at 50 HZ is 10	$\boldsymbol{\Omega}$. The reactance of	Fit at 200Hz
1) 10 Ω 2 40 Ω	2	$4) 2.5 \Omega$	4 20 Ω
113. Practically ozone layer a	abords radiations of	wave length.	
1) less than 3×10^{-7} m	2) greater than	$3 \times 10^{-7} m$ 3) equal	al to $3 \times 10^{-7} m$ 4) all of the above.
114. If the wave length of a p	=	_	
			$5 \times 10^{-19} J$ 4) $6.95 \times 10^{-19} J$
			leaves a metal surface with 1.1 ev of
kinetic energy. The work			
1) 2.9 eV 2) 5.1 e	V 3) 3	.64 eV	4) 4.4 eV
			series of hydrogen spectrum is.
5 7	<u> </u>	7	5
1) $\frac{5}{36}$ 2) $\frac{7}{20}$		$\frac{3}{144}$	4) ${27}$
117. Which of the following			
	2) Neutron	3) Electron	4) Alpha particle.
118. For an n-p-n transistor s	· ·	· · · · · · · · · · · · · · · · · · ·	· •
1) Emitter is heavily do			
2) Base is lightly dope	-		
3) Collector is lightly of		ize	
4) Collector is moderate			
119. The logic operation perf	• •		
	· Proceedings of the control of the		
A -	7	V	X
B ••••••••••••	1 /	'	
1) NOR 2) AND	1) N	NAND	4) OR
120. The frequency suitable b	,		
± *	MHz	3) 1 GHz	4) 1000GHz
11/10 KHZ 2) 10	171117	<i>5)</i> 1 GHZ	4) 1000GHZ

CHEMISTRY

121. (I) $H_2O + O_3 \rightarrow H_2O + 2O_2$

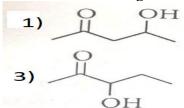
(II)
$$H_2O_2 + Ag_2O \rightarrow 2Ag + H_2O + O_2$$

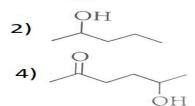
Role of hydrogen peroxide in the above reactions is respectively

- 1) Oxidising in (I) and reducing in (II) 2) reducing in (I) and oxidising in (II) 3) reducing in (I) and (II) 4) oxidising in (I) and (II) If 10^{21} molecules are removed from 200 mg of CO_2 , the number of moles of CO_2 left is 122. 2) 28.8×10^{-3} 1) 2.88×10^{-3} 3) 0.288×10^{-3} 4) 1.66×10^{-2} Leaving tendency of the following groups in decreasing order is 123. $I. CI^ III. OH^-$ IV. 1) IV > II > I > III2) I > II > III > IV3) II > IV > I > III4) I > IV > II > III124. What products are formed when the following compound is treated with Br_2 in the presence of $FeBr_3$ 2) 4) None of these T e ions O^{2-} , F^- , Na^+ , Mg^{2+} and AI^{3+} are isoelectronic. T eir ionic radii show 125. 1) a decrease from O^{2-} to F^{-} and then increase from Na^{+} to AI^{3+} 2) a significant increase from O^{2-} to AI^{3+} 3) a significant decrease from O^{2-} to AI^{3+} 4) an increase from O^{2-} to F^{-} and then decrease from Na^{+} to AI^{3+} . Acidity of diprotic acids in aqueous solutions increases in the order 126. 2) $H_{\gamma}Se < H_{\gamma}S < H_{\gamma}Te$ 1) $H_2S < H_2Se < H_2Te$ 3) $H_{\gamma}Te < H_{\gamma}S < H_{\gamma}Se$ 4) $H_2Se < H_2Te < H_2S$ 127. The correct order of increasing basicity of the given conjugate bases $(R = CH_3)$ is (A) $RCOO^{-} < HC \equiv C^{-} < NH_{2}^{-} < R^{-}$ (B) $RCOO^{-} < HC \equiv C^{-} < R^{-} < NH_{2}^{-}$ $(C) R^{-} < HC \equiv C^{-} < RCOO^{-} < NH_{2}^{-}$ (D) $RCOO^- < NH_2^- < HC \equiv C^- < R^-$ 128. A mong the following mixtures, dipole-dipole as the major interaction is present in 1) benzene and ethanol 2) acetonitrile and acetone 3) KCI and water 4) benzene and carbon tetrachloride. The enthalpy of neutralization of NH_4OH and CH_3COOH is $-10.5 \, kcal \, mol^{-1}$ and enthalpy of 129. Neutralization of CH_3COOH with strong base is $-12.5 \, kcal \, mol^{-1}$. T e enthalpy of ionization of NH₄OH Wiil be 1) $4.0 \, kcal \, mol^{-1}$ 2) $3.0 \ kcal \ mol^{-1}$ 3) $2.0 \ kcal \ mol^{-1}$ 4) $3.2 \, kcal \, mol^{-1}$ 130. The correct order of the oxidation states of nitrogen in $NO, NO_2, and N_2O_3$ is
- 131. When $LiNO_3$ is heated, it gives oxide, Li_2O , where as other alkali metal nitrates decompose to give

2) N₂O < NO < N₂O₃ < NO
 4) N₂O < N₂O₃ < NO < N₂O

1) $NO_2 < NO < N_2O_3 < N_2O$

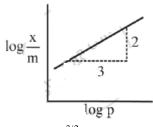

3) $O_2 < N_2 O_3 < NO < N_2 O$


Corresponding

- 1) nitrite
- 2) peroxide
- 3) both nitrite and oxide
- 4) none of these
- 132. An explosion takes place when $conc.H_2SO_4$ is added to $KMnO_4$ which of the following is formed?
 - 1) Mn_2O_7
- 2) $Mn O_2$
- 3) $Mn SO_{\Lambda}$
- 4) Mn_2O_3
- 133. Antiseptics and disinfectants either kill or prevent growth of micro-organisms. Identify which of the following Statement is not true
 - 1) Dilute solution of boric acid and hydrogen peroxide are strong antiseptics.
 - 2) Disinfectants harm the tissues.
 - 3) A 0.2% solution of phenol is an antiseptic while 1.0% solution is disinfectant.
 - 4) Tincture of iodine is a powerful antiseptic.
- 134. When a liquid X is treated with Na_2CO_3 solution, a mixture of two salts Y and Z are produced in the solution. The mixture on acidification with sulphuric acid and distillation, produces the liquid X again Identify X.
 - 1) *Cl*₂

2) *Br*₂

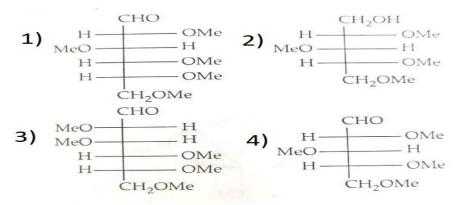
- 3) *Hg*
- 4) *l*₂
- Which of the following will be most readily dehydrated in acidic condition 135.



- 136. An element occurs in two crystalline forms α and β . α -form has a fcc structure with $\alpha = 3.68$ A and β – form has a bcc structure with a = 2.92 A calculate the ratio of their densities.

2) 1:2

3) 2:1


- 4) 2:3
- 137. The increasing order of atomic radii of the following group 13 elements is
 - 1) Al < Ga < In < TI
- 2) Ga < Al < In < TI
- 3) Al < In < Ga < TI
- 4) Al < Ga < TI < In
- 138. Adsorption of a gas follows Freundlich adsorption isotherm x is the mass of the gas adsorption on mass m of the adsorbent. The plot of $\log \frac{x}{m}$ versus $\log P$ is shown in the given graph $\frac{x}{m}$ is proportional to

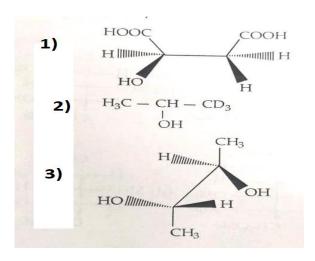
- 139. $SiCl_4$ is easily hydrolysed but CCI_4 is not. This is because
 - 1) bonding in $SiCI_4$ is ionic
 - 2) silicon is non-metallic
 - 3) silicon can extend its coordination number beyond four but carbon cannot
 - 4) silicon can form hydrogen bonds but carbon cannot.
- 140. In which of the following coordination entities the magnitude of Δ_0 (CFSE in octahedral field) will be maximum

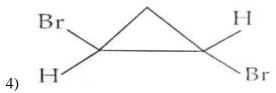
- 1) $\left[Co\left(C_2O_4\right)_3\right]^{3-}$ 2) $\left[Co\left(H_2O\right)_6\right]^{3-}$ 3) $\left[Co\left(NH_3\right)_6\right]^{3+}$ 4) $\left[Co\left(CN\right)_6\right]^{3-}$ D-glucose $\xrightarrow{CH_3CH_2SH} \xrightarrow{HCI} \xrightarrow{NaOH} \xrightarrow{HgCI_2} X$

The final product X is

- 142. An amount of solid NH_4HS is placed in a flask already containing ammonia gas at a certain temperature and 0.50 atm Pressure. Ammonium hydrogen sulphide decomposes to yield NH_3 and H_2S gases in the flask. When the decomposition reaction reaches equilibrium, the total pressure in the flask rises to 0.84 atm. The Equilibrium constant for NH_4HS decomposition at this temperature is 1) 0.30 2) 0.18 3) 0.17 4) 0.11
- 143. Give the structure of the compound X formed in the following reaction

$$OCH_{3} \xrightarrow{(i) C_{2}H_{5}MgI} X$$

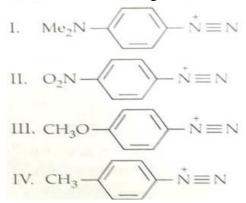

$$1) \xrightarrow{OH} OCH_{3}$$


$$2) \xrightarrow{OH} OCH_{3}$$

$$3)_{C_{2}H_{5}}^{CH_{3}} \xrightarrow{OH} O$$

$$4) \xrightarrow{OH} OCH_{3}$$

- 144. If S_1, S_2, S_3 and S_4 are the solubilities of AgCI in water, in 0.01 M $CaCI_2$, in 0.01 M NaCI and in 0.05M $AgNO_3$ respectively at a certain temperature, the correct order of solubility is
 - 1) $S_1 > S_2 > S_3 > S_4$ 2) $S_1 > S_3 > S_2 > S_4$ 3) $S_1 > S_2 = S_3 > S_4$ 4) $S_1 > S_3 > S_4 > S_2$
- 145. Which of the following molecules will not show optical activity



- 146. In Bohr series of lines of hydrogen spectrum, the third line from the red end corresponds to which one of the following inter orbit jumps of the electron, for Bohr orbits in an atom of hydrogen?
 - 1) $3 \rightarrow 2$

2) $5 \rightarrow 2$

- 3) $4 \rightarrow 1$
- 4) $2 \rightarrow 5$

147. Consider the following ions:

The reactivity order of these ions towards azo coupling reaction under similar conditions is

- 1) *I* < *IV* < *II* < *III*
- 2) *I* < *III* < *IV* < *II*
- 3) *III* < *I* < *II* < *IV* 4)
- 4) III < I < IV < II
- 148. 0.44 g of a monohydric alcohol when added to methyl magnesium iodide in ether liberates 112 cm^3 of Methane at S.T.P . with PCC the same alcohol forms a carbonyl compound that answers silver mirror test. The monohydric alcohol is

$$(CH_3)_3C-CH_2OH$$

 $(CH_3)_2CH-CH_2OH$

- Consider a reaction $aG + bH \rightarrow products$. When concentration of both the reactants G and H is doubled. The rate increases eight times. However, when concentration of G is doubled keeping the concentration of H Fixed. The rate is doubled. The overall order of the reaction is 1) 0 2) 1 3) 2 4) 3
- 150. Match the column I with column II and mark the appropriate choice.

Column I

Column II

1) Quick Lime

(I)setting fractured bones

2) plaster of Paris

(II)A constituent of chewing gum

3) Slaked lime


(III) manufacture of belching power

) Staked IIIIe

- (IV) Manufacture of dyestuffs
- 4) lime store
- (A) $(A) \rightarrow (i), (B) \rightarrow (iv), (C) \rightarrow (ii), (D) \rightarrow (iii)$
- (B) $(A) \rightarrow (iv), (B) \rightarrow (i), (C) \rightarrow (iii), (D) \rightarrow (ii)$
- (C) $(A) \rightarrow (ii), (B) \rightarrow (iii), (C) \rightarrow (i), (D) \rightarrow (iv)$
- (D) $(A) \rightarrow (iii), (B) \rightarrow (ii), (C) \rightarrow (iv), (D) \rightarrow (i)$
- 151. The order of compounds of their reactivity towards HCN is
 - 1) acetaldehyde <acetone<methyl tert-butyl ketone<di-tert-butyl ketone
 - 2) di-tert-butyl ketone < methyl tert butyl ketone < acetandehyde
 - 3) di-tert-butyl ketone < acetone <methyl tert-butyl ketone < acetaldehyde
 - 3) di-tert-butyl ketolic \ acctolic \ inethyl tert-butyl ketolic \ acctaldenyde
 - 4) acetone < acetaldehyde < di-tert-butyl ketone < methyl tert-butyl ketone.
- 152. which of the following is a correct method to convert P-toluidine to p-toluic acid
 - 1) Diazotisation, CuCN, H_2/pd

- 3) Diazotisation, CuCN / KCN, H_2O / H^+
- 4) Diazotisation, NaCN, NaOH
- 153. The IUPAC name for the following compound is

- 1) 3-methyl-4-(3-methylprop-1-enyl)-heptyne
- 2)3,5-dimethyl-4-propylhept-6-en-l-yne
- 3)3-methyl-4-(1-methylprop-2-ynyl)-1-heptene
- 4) 3,5-dimethyl-4-propylhept-1-en-6-yne
- 154. The main reactions occurring in blast furnace during extraction of iron from haematite are
 - (I) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$
 - (II) $FeO + SiO_2 \rightarrow FeSiO_3$
 - (III) $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$
 - (IV) $CaO + SiO_2 \rightarrow CaSiO_3$
 - 1) I, II and III
- 2) I and IV
- 3) I, III and IV
- 4) II and III
- 155. A dihaloalkane 'X' having formula $C_3H_6CI_2$, on hydrolysis gives a compound, that can reduce Tollen's reagent. The compound 'X' is
 - 1) 1,2-dichloropropane
 - 2) 1,1-dichloropropane
 - 3) 1,3-dichloropropane
 - 4) 2,2-dichloropropane
- 156. An organic compound is estimated through Dumas method and was found to evolved 6 moles of CO_2 ,4 moles of H_2O and 1 mole of nitrogen gas. The formula of the compound is
 - 1) C_6H_8N
- 2) $C_{12}H_8N$
- 3) $C_{12}H_8N_2$
- 4) $C_6H_8N_2$
- 157. Among the following species, identify the isostructural pairs NF_3 , NO_3^- , BF_3 , H_3O^+ , HN_3
 - 1) $\lceil NF_3, NO_3^- \rceil$ and $\lceil BF_3, H_3O^+ \rceil$

2) $\lceil NF_3, HN_3 \rceil$ and $\lceil NO_3^-, BF_3 \rceil$

3) $\left[NF_3, H_3O^+\right]$ and $\left[NO_3^-, BF_3\right]$

- 4) $\left[NF_3, H_3O^+\right]$ and $\left[HN_3, BF_3\right]$
- 158. Vapour pressure of dilute aqueous solution of glucose is 750 mm of mercury at 373 K. The mole fraction of Solute is
 - 1) 1/76

2) 1/7.6

3) 1/38

- 4) 1/10
- 159. The Principal products obtained on heating iodine with concentrated caustic soda solution are
 - 1) *NaOI* + *NaI*
- 2) $NaIO_3 + NaI$
- 3) $NaOI + NaIO_3 + NaI$
- 4) $NaIO_{\Delta} + NaI$
- 160. Formation of polyethylene from calcium carbide takes place as follows:

$$CaC_2 + 2H_2O \rightarrow Ca(OH)_2 + C_2H_2$$

$$C_2H_2 + H_2 \rightarrow C_2H_4$$

$$nC_2H_4 \rightarrow (-CH_2 - CH_2 -)_n$$

The amount of polyethylene obtained from 64 kg of CaC_2 is

- 1) 7 kg
- 2) 14 *kg*
- 3) 21 kg

4) 28 kg

KEY SHEET

MATHEMATICS

1	2	3	4	5	6	7	8	9	10
3	4	1	2	4	1	2	2	3	2
11	12	13	14	15	16	17	18	19	20
1	1	4	1	1	1	2	3	1	4
21	22	23	24	25	26	27	28	29	30
2	1	2	4	1	2	2	4	3	1
31	32	33	34	35	36	37	38	39	40
1	3	4	2	1	3	2	2	2	3
41	42	43	44	45	46	47	48	49	50
2	1	1	3	1	4	4	2	1	1
51	52	53	54	55	56	57	58	59	60
3	2	1	3	3	4	1	1	2	2
61	62	63	64	65	66	67	68	69	70
2	1	1	3	1	3	3	1	2	1
71	72	73	74	75	76	77	78	79	80
1	2	3	2	2	2	3	3	2	1

	PHYSICS								
81	82	83.	84	85	86	87	88	89	90
1	3	1	4	2	2	3	3	3	3
91	92	93	94	95	96	97	98	99	100
1	4	2	4	2	2	1	2	3	1
101	102	103	104	105	106	107	108	109	110
3	2	1	3	2	2	4	2	1	3
111	112	113	114	115	116	117	118	119	120
3	2	1	1	1	2	4	3	2	2
				СНЕ	EMISTRY				
121	122	123	124	125	126	127	128	129	130
3	1	1	2	3	1	1	2	3	4
131	132	133	134	135	136	137	138	139	140
1	1	1	2	1	1	3	1	3	4
141	142	143	144	145	146	147	148	149	150
1	4	3	2	3	2	2	2	4	2
151	152	153	154	155	156	157	158	159	160
2	3	3	2	2	2	3	1	2	4

4.

KSRM COLLEGE OF ENGINEERING (AUTONOMOUS), KADAPA KLM COLLEGE OF ENGINEERING FOR WOMEN, KADAPA FOR ENGINEERING ASPIRANTS

SET-4

			WIATIIS	
1.	If $A = (3,81)$ a	and $f: A \to B$ is a surjection	ction defined by $f(x)$	$=\log_3 x$ then $B=$
	1) [1,4]	2) (1,4]	3) (1,4)	4) [1,∞)
2.	If $f(x) = \frac{x}{\sqrt{1+x}}$	$\frac{1}{x^2}$ then $fofof(x) =$		

1)
$$\frac{x}{\sqrt{1+3x^2}}$$
 2) $\frac{x}{\sqrt{1-x^2}}$ 3) $\frac{2x}{\sqrt{1+2x^2}}$ 4) $\frac{x}{\sqrt{1+x^2}}$

3.
$$\forall n \in \mathbb{N}, \frac{n^4}{24} + \frac{n^3}{4} + \frac{11n^2}{24} + \frac{n}{4} \text{ is a}$$
1) Rational Number 2) Integer 3) Natural Number 4) Real Number

If A is a square matrix of order 3 then $|Adj(Adj A^2)| =$ 4) $|A|^{16}$ 1) $|A|^2$ 3) $|A|^{8}$

Given $a_i^2 + b_i^2 + c_i^2 = 1(i = 1, 2, 3)$ and $a_i a_j + b_i b_j + c_i c_j = 0 (i \neq j, i, j = 1, 2, 3)$ then the value of 5. $\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$ is

2) $\frac{1}{2}$ 3) ±1 1) 0 4) 2

The system of equation 3x + 2y + z = 6, 3x + 4y + 3z = 14 and 6x + 10y + 8z = a, has infinite number of 6. solutions, if a is equal to

Matrix A is given by $A = \begin{bmatrix} 6 & 11 \\ 2 & 4 \end{bmatrix}$ then the determinant of $A^{2015} - 6A^{2014}$ is 7.

1) 2^{2016} 2) $(-11)2^{2015}$ 3) $-2^{2015} \times 7$ 4) $(-9)2^{2014}$ If $\overline{p} = \overline{i} + a\overline{j} + \overline{k}$ and $\overline{q} = \overline{i} + \overline{j} + \overline{k}$, then $|\overline{p} + \overline{q}| = |\overline{p}| + |\overline{q}|$ is true for

8. 2) a = 1 3) all real values of 'a' 4) for no real values of 'a'

The vector \bar{c} directed along the internal bisector of the angle between the vectors $2\bar{i}+3\bar{j}-6\bar{k}$ and 9.

 $-2\overline{i} - \overline{j} + 2\overline{k}$ with $|\overline{c}| = 10\sqrt{21}$ is ___

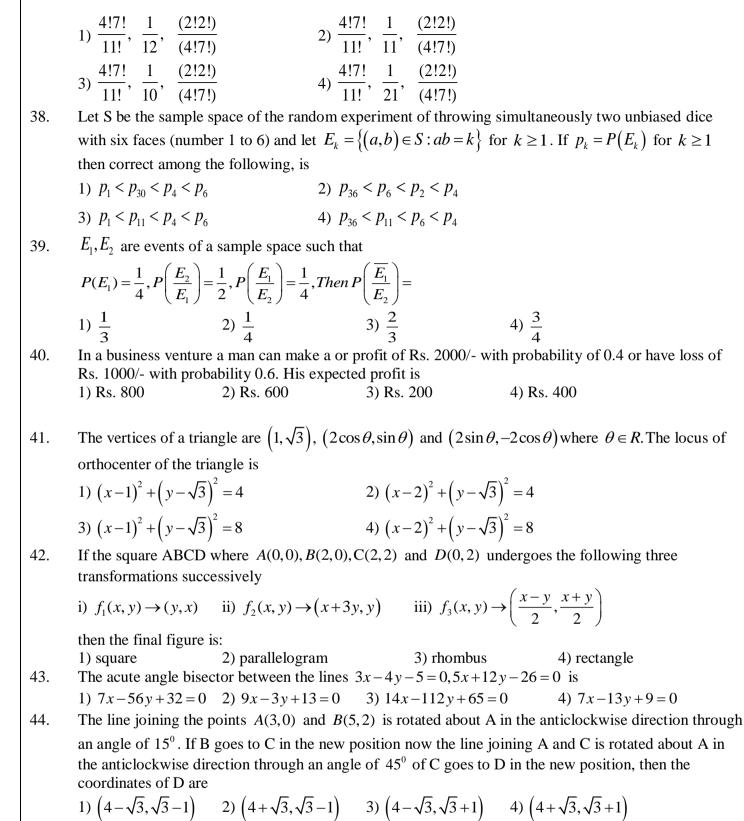
1) $\pm \left(-8i + 2j - 4k\right)$ 2) $\pm 10\left(-4i + j - 2k\right)$ 4) $\pm (12\bar{i} + 3\bar{j} + 6\bar{k})$ 3) $\pm \left(-12\bar{i} + 3\bar{j} - 6\bar{k}\right)$

The orthogonal projection of $\bar{a} = 2\bar{i} + 3\bar{j} + 3\bar{k}$ on $\bar{b} = \bar{i} - 2\bar{j} + \bar{k}$ (where \bar{i} , \bar{j} , \bar{k} are unit vectors along 10. three mutually perpendicular directions) is

	$1) \frac{-\overline{i} + 2\overline{j} - \overline{k}}{6}$	$2) \ \frac{-\bar{i} + 2\bar{j} - \bar{k}}{\sqrt{6}}$	3) $\overline{i} - 2\overline{j} + \overline{k}$	4) $-\overline{i} + 2\overline{j} - \overline{k}$
11.	If $\overline{A}.(\overline{B} + \overline{C}) = \overline{B}.(\overline{C} + \overline{C})$	$(\overline{A}) = \overline{C}.(\overline{A} + \overline{B}) = 0$ and	$ \overline{A} = 3, \overline{B} = 4$ and	$\left \overline{C} \right = 5 \text{ then } \left \overline{A} + \overline{B} + \overline{C} \right =$
	1) 5	, ,	3) $5/\sqrt{2}$	
12.			gh the points $A(0,0,0)$.	B(1,1,1), C(3,2,1) & the plane passing
	through $A(0,0,0), B(0,0)$	(1,1,1), D(3,1,2) is $(1,1,1), D(3,1,2)$	3) 120 ⁰	4) 30°
10	,	$= 5\overline{i} + \overline{j} + 2\overline{k} \text{ then } \overline{a} \times \overline{b} $	<i>'</i>	4) 30
13.		•	1 /	4) 110
14.	1) 270 If $0 < x < \pi \ 81^{\sin^2 x}$	2) 120 $81^{\cos^2 x} = 30$ then $x = $	3) 170	4) 110
14.			σ	Λ
		$2) \frac{\pi}{4}$		
15.	In a $\triangle PQR$, $\underline{R} = \frac{\pi}{2}$ i	$f \tan\left(\frac{P}{2}\right) \text{ and } \tan\left(\frac{Q}{2}\right)$	are the roots of the ϵ	equation $ax^2 + bx + c = 0 (a \neq 0)$ then
	1) $a+b=c$		3) $a+c=b$	
16.		naximum values of sin ²	, ,	,
	1) $-\frac{1}{2}, \frac{1}{2}$	2) $\frac{1}{2}$,1	3) $\frac{1}{2}$, $\frac{3}{2}$	4) $\frac{3}{2}$, 2
17.	If $0 \le x \le 2\pi$ and $ \cos x $	$ \sin x \le \sin x$, then		
	$1) \ x \in \left[0, \frac{\pi}{4}\right]$	$2) \ x \in \left[\frac{\pi}{4}, 2\pi\right]$	$3) \left[\frac{\pi}{4}, \frac{3\pi}{4} \right]$	4) $[0,\pi]$
18.	If $x^2 + y^2 + z^2 = r^2$ th	hen $\tan^{-1} \left(\frac{xy}{zr} \right) + \tan^{-1} \left(\frac{xy}{zr} \right)$	$\left(\frac{yz}{xr}\right) + \tan^{-1}\left(\frac{xz}{yr}\right) =$	
	1) π	2) $\frac{\pi}{2}$	3) 0	4) $\frac{\pi}{4}$
19.	If r_1, r_2, r_3 are the rad	lii of the escribed circle	es of a $\triangle ABC$ and if r i	is the radius of its incircle then
	$r_1r_2r_3 - r(r_1r_2 + r_2r_3 +$	$(r_3r_1) =$		
	1) 0	2) 1	3) 2	4) 3
20.	In an equilateral tria	$ngle r: R: r_1 is$		
	1) 1:1:1	2) $1:\sqrt{2}:3$	3) 1:2:3	4) $2:\sqrt{3}:\sqrt{3}$
21.	If $\left z - \frac{4}{z}\right = 2$ then th	ne maximum value of	z is	
	1) $\sqrt{5}$	2) $\sqrt{5} + 1$	3) $\sqrt{5}-1$	4) $-\sqrt{5}$
22.			e three points forming a	4) $-\sqrt{5}$ a triangle ABC in the Gussain plane
	then triangle ABC is 1) equilateral	2) isosceles	3) scalene	4) Right angled
23.	If $\log_{\sqrt{3}} \left \frac{ z ^2 - z + 1}{ z + 2} \right < \infty$	2 then locus of z is		
	1) a circle	<u> </u>	3) interior of the circ	• •
24.	If α, β are the roots of	of the equation $x^2 - 2x$	$\alpha + 4 = 0$, then $\alpha^5 + \beta^5$	=

	1) 2	2) 4	3) 6	4) 4
26.	The equation $(x-3)^9$	$+(x-3^2)^9+(x-3^3)^9$	$++(x-3^9)^9=0$ has	
	1) all the roots are rea	al	2) one real and 8 imag	ginary roots
	3) real roots namely.	$x = 3,3^2,3^9$	4) five real and 4 ima	ginary roots.
27.	If α, β, γ are the root	ts of the equation x^3 –	x + 2 = 0 then the equat	ion whose roots are
	$\alpha\beta + \frac{1}{\gamma}, \beta\gamma + \frac{1}{\alpha}, \gamma\alpha +$	$\frac{1}{\beta}$ is		
	1) $2y^3 + y^2 + 1 = 0$	$2) 2y^3 - y^2 + 1 = 0$	3) $y^3 + y^2 + 1 = 0$	4) $2y^3 + y^2 - 1 = 0$
28.	Number of real roots	of the equation $(x^2 - x^2)$	$(5x+1)(x^2+x+1)+8x^2$	=0
	1) 1	2) 2	,	4) 4
29.	A basket contains 4 of fruits from the basket		angoes. The number of	ways a person make selection of
20	1) 209	2) 210	,	4) 212
30.	picnic to Zoo Park, a	different group being	sent every week. Durin	including at least three boys go for a g, the picnic, the class teacher gives d was 85, then value of 'g' is 4) 5
31.		in which 52 cards can	be divided into 4 sets of	of 13 each is
	1) $\frac{52!}{(13!)^4}$	$2) \frac{52!}{4!(13!)^4}$	3) $\frac{52!}{4^{13}}$	4) $\frac{52!}{13!4^{13}}$
32.	$\frac{7}{5} \left(1 + \frac{1}{10^2} + \frac{1.3}{1.2} \cdot \frac{1}{10^4} + \frac{1}{10^4} \right)$	$-\frac{1.3.5}{1.2.3}\cdot\frac{1}{10^6}+\dots\infty$		_
	1) $\sqrt{2}$	2) $2\sqrt{2}$	3) $2^{\frac{1}{3}}$	4) $\sqrt{\frac{2}{3}}$
33.	Coefficient of x^2 in t	he expansion of $(1+3)$	$(x-2x^3)^{10}$	
	1) 62640	2) 64620	3) 65640	4) 62330
34.	Coefficient of x^4 in t	he expansion of $\frac{1}{(x+1)}$	$\frac{1}{(x+2)}$	
		2) $\frac{11}{32}$		4) $\frac{31}{32}$
	32	32	32	32
35.		<u>*</u>	300 were found to be 2: ariance of combined sa	5, 10 respectively. Their standard
	1) 64	2) 65.2	3) 67.2	4) 64.2
36.	Suppose a population	A has 100 observation	ns 101,102, 200 ar	nd another population B has 100
	observations 151, 152	$2, \ldots 250. \text{ If } V_A \text{ and } V_A$	V_B represent the varia	ances of the two populations,
	respectively, then V_A	$/V_{B is}$		
	1) 1	2) 9/4	3) 4/9	4) $\frac{2}{3}$
37.	 relative position of the order of vowels 	Evowels and consonants remains the same.	arranged at random. The ts remains unaltered. ins the same in the same.	

3) -32


4) -64

2) 32

1) 64 2) 32 3) -3. The minimum value $|x| + \left| x + \frac{1}{2} \right| + \left| x - 3 \right| + \left| x - \frac{5}{2} \right|$ is

1) 64

25.

46. In a $\triangle ABC$ the mid points of the sides AB, BC, CA are respectively (l,0,0), (0,m,0) and (0,0,n). Then $\frac{AB^2 + BC^2 + CA^2}{l^2 + m^2 + n^2} =$

If $4a^2 + 9b^2 - c^2 + 12ab = 0$ then the family of straight lines ax + by + c = 0 is concurrent at

1) (2,3) or (-2,-3) 2) (2,-3) or (-2,6) 3) (-2,-4) or (-2,3) 4) (2,5) or (-1,-5)

 $l^{2} + m^{2} + n^{2}$ 1) 2 2) 4 3) 8 4) 16

47. The angle between the diagonals of the parallelogram formed by the points (1,2,3),(-1,-2,-1),(2,3,2),(4,7,6) is

45.

	1) cos ⁻¹ (7)	$2) \cos^{-1}\left(\frac{7}{\sqrt{155}}\right)$	$3) \cos^{-1}\left(\frac{7}{\sqrt{465}}\right)$	4) $\cos^{-1}\left(\frac{7}{465}\right)$
18.	A variable plane in tetrahedron OABO	ntersects the coordinate C is	'p' from O (0,0,0). Th	hen the locus of the
	1) $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} =$	$\frac{1}{n^2}$ 2) $\frac{1}{r}$	$\frac{1}{2} + \frac{1}{v^2} + \frac{1}{7^2} = \frac{4}{r^2}$	

4) $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = 16p^2$

centroid of the

49.
$$\lim_{x \to 2^+} \left(\frac{\left[x \right]^3}{3} - \left[\frac{x}{3} \right]^3 \right)^x \text{ is (where [] is GIF)}$$

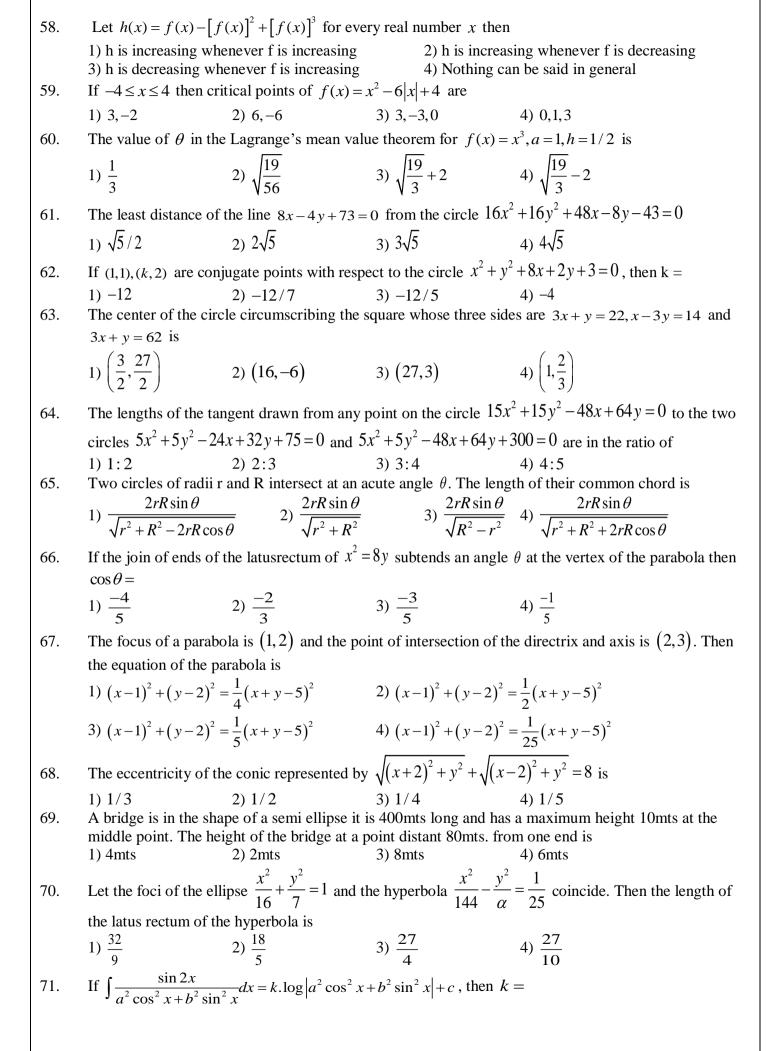
3) $\frac{1}{r^2} + \frac{1}{r^2} + \frac{1}{r^2} = \frac{16}{r^2}$

- 2) $\frac{64}{27}$ 3) $\frac{8}{2}$ $\lim_{x\to\infty} \left(\frac{a^{1/x} + b^{1/x} + c^{1/x}}{3} \right)^x = \text{ (where a, b, c are real and non-zero)}$ 50.
- 2) $(abc)^{1/3}$ 4) 1
- Let $f: R \to R$ be defined by $f(x) = \begin{cases} \alpha + \frac{\sin[x]}{x} & \text{, if } x > 0 \\ 2 & \text{, if } x = 0 \text{ where [x] denotes the integral part} \\ \beta + \left\lceil \frac{\sin x x}{x^3} \right\rceil & \text{, if } x < 0 \end{cases}$ 51.

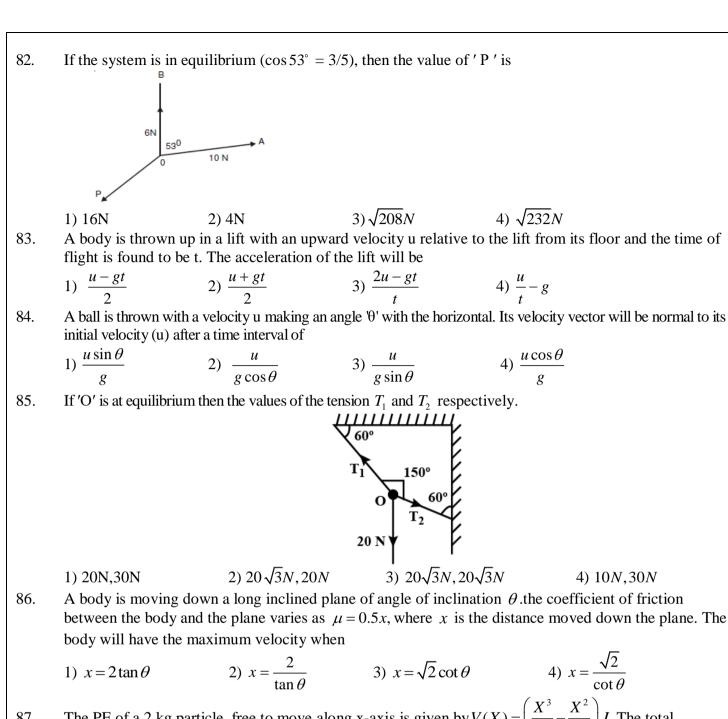
of x. If f continuous x = 0, then $\beta - \alpha =$

Let $f(x) = a \sin |x| + be^{|x|}$ is differentiable when

52.


3) 0

4) 2


4) (1, 2)

4) 1

- If $\frac{d}{dx} \left(\frac{1 + x^2 + x^4}{1 + x + x^2} \right) = ax + b$, then (a, b) =53.
- 3) (2,-1)1) (-1,2)
- Let $f(x) = \begin{vmatrix} \cos x & x & 1 \\ 2\sin x & x^2 & 2x \\ \tan x & x & 1 \end{vmatrix}$ then $\lim_{x \to 0} \frac{f^1(x)}{x} = \lim_{x \to 0} \frac{f^1(x)}{x}$ 54.
- 55. then relative error in f is
 - 2) $\alpha \left(\frac{1}{u} + \frac{1}{v} \right)$ 3) $\alpha \left(\frac{1}{u} \frac{1}{v} \right)$ 4) $\frac{3}{\alpha}$
- A point 'P' is moving with constant velocity V along a line AB. O is a point on the line perpendicular 56. to AB at A and at a distance "l" from A. The angular velocity of P about O is
 - 2) $\frac{lv}{an^2}$
- Length of the normal to the curve at any point on the curve $y = \frac{a(e^{x/a} + e^{-x/a})}{2}$ varies as 57.
 - 2) x^{2} 1) *x*

		1	_	
	$1) \frac{1}{b^2 - a^2}$	2) $\frac{1}{(b^2-a^2)^2}$	$3) \frac{1}{a^2 - b^2}$	4) $\frac{1}{a^2 + b^2}$
72.	If $\int \frac{1}{\sqrt{x^2 + x + 1}} dx = 0$	$a \sinh^{-1}(bx+c)+d$, the	en descending order of	a,b,c is
	1) a, b, c	2) <i>b</i> , <i>c</i> , <i>a</i>		4) <i>c</i> , <i>a</i> , <i>b</i>
73.	$\int \frac{\sin^2 x \cdot \sec^2 x + 2\tan^2 x}{\sqrt{1 - x^2} (1 - \cos^2 x)}$	$\frac{1}{x} \cdot \sin^{-1} x \cdot \sqrt{1 - x^2} dx = \frac{1}{x} + \tan^2 x$		
	$1) \left(\cos^2 x\right) \cdot \left(\sin^{-1} x\right)$	+c 2) (si	$\sin^2 x) \cdot \left(\sin^{-1} x\right) + c$	
	$3) \left(\sec^2 x \right) \cdot \left(\cos^{-1} x \right)$	+c 4) (see	$(\cot^2 x) \cdot (\tan^{-1} x) + c$	
74.	$\int \left(1+x-x^{-1}\right)e^{x+x^{-1}}dx$	x =		
				c 4) $xe^{x+x^{-1}}+c$
75.	Statement – I: $f(x)$	$= \int_{1}^{x} \frac{\log t dt}{1 + t + t^{2}} (x > 0) \text{ th}$	$en f(x) = -f\left(\frac{1}{x}\right)$	
	Statement – II: $f(x)$	$0 = \int_{1}^{x} \frac{\log t dt}{1+t} \text{ then } f(x)$	$+ f\left(\frac{1}{x}\right) = \frac{1}{2} \left(\log x\right)^2$	
76.	Statement – II is a co 2) 1) Statement – I is Statement – II is NO 3) Statement – I is T	rue, Statement – II is trorrect explanation for Statement – II is true, Statement – II is True, Statement – II is True, Statement – II is False, Statement – II is True, State	Statement – I s true; n for Statement – I False.	
	1) $\frac{2}{5}(\sqrt{17}+\sqrt{2})$	2) $\frac{2}{7}(\sqrt{17}-\sqrt{17})$	$(\sqrt{2})$ 3) $\frac{5}{2}(\sqrt{17} - \sqrt{17})$	$\sqrt{2}$) 4) $\frac{5}{2}(\sqrt{17} + \sqrt{2})$
77.	8	$(x, y) / x^2 + y^2 \le 1 \le x + $	-	2
	`	2) $\frac{\pi}{4} - \frac{1}{2}$,	4) $\pi + 1$
78.		T 2	т т	$(x + \sqrt{c})$ when 'c' is a parameter is of
	1) degree 4	2) order 2	3) degree 3	4) degree 1
79.	The solution to the I	$D.E \frac{xdx}{x^2 + y^2} = \left(\frac{y}{x^2 + y^2}\right)$	(x-1)dx is	
	$1) \ y = x \cos t (c - x)$	$2) \cos^{-1}\left(\frac{y}{x}\right) = -x + \frac{1}{x}$	$3) y = x \tan(x)$	$(c-x)$ 4) $\frac{y^2}{x^2} = x \tan(c-x)$
80.	_	_		t the rate of change of production P
	wrt additional numb	er of workers X is give	n by $\frac{dp}{dx} = 100 - 12\sqrt{x}$. If the firm employees 25 more
	workers, then the net 1) 2500	w level of production of 2) 3000	3) 3500	4) 4000
81.	The Richardson equator (A and B are con	ation is given by $I = A$	PHYSICS $T^2e^{(-B/KT)}$. The dimens	sional formula for AB^2 is same as that
	1) IT^{-2}	2) <i>k T</i>	3) Ik^2	4) Ik^2/T

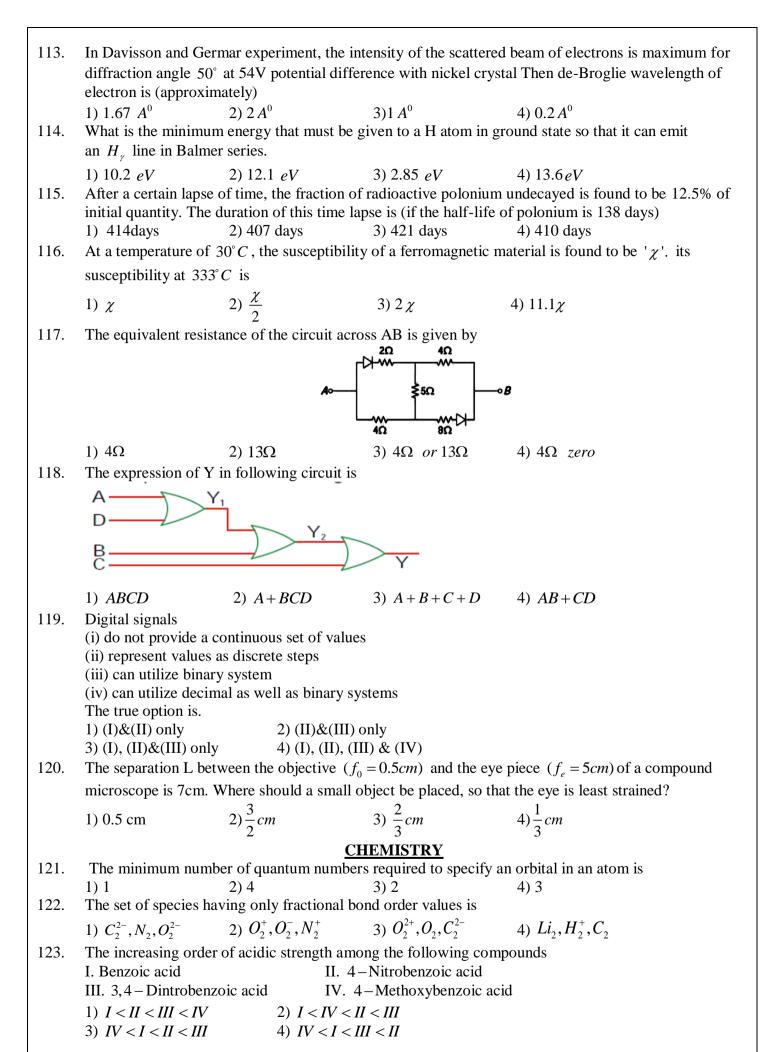
The PE of a 2 kg particle, free to move along x-axis is given by $V(X) = \left(\frac{X^3}{3} - \frac{X^2}{2}\right)J$. The total 87.

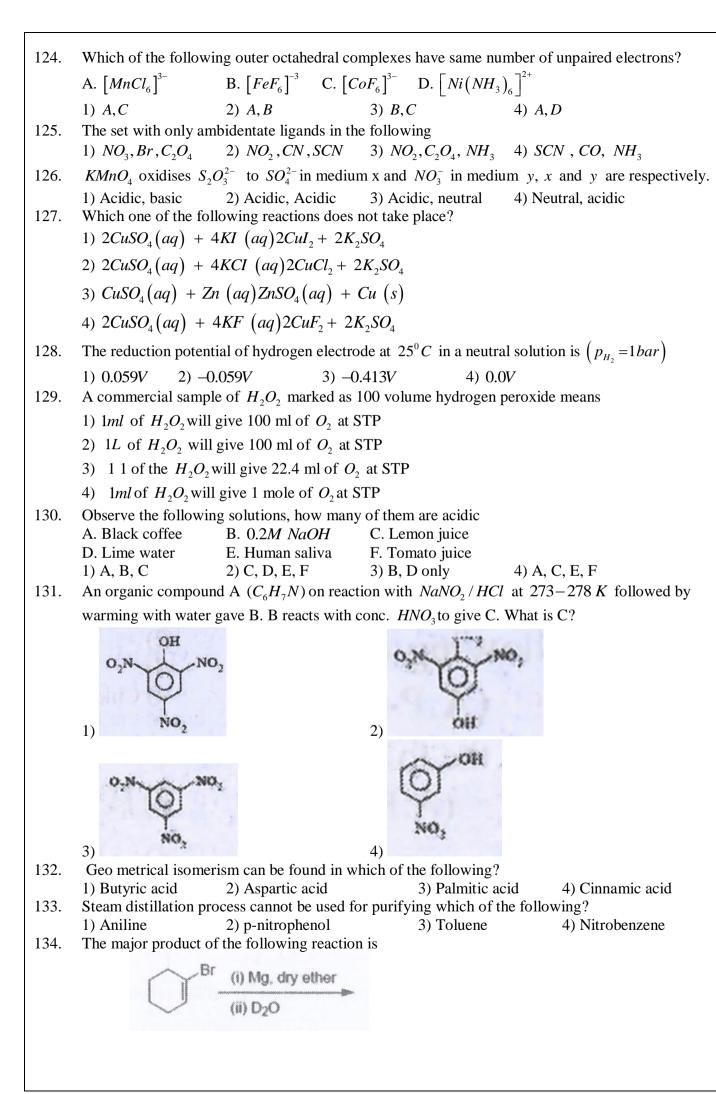
mechanical energy of the particle is 4 J. Maximum speed of particle (in ms^{-1}) is

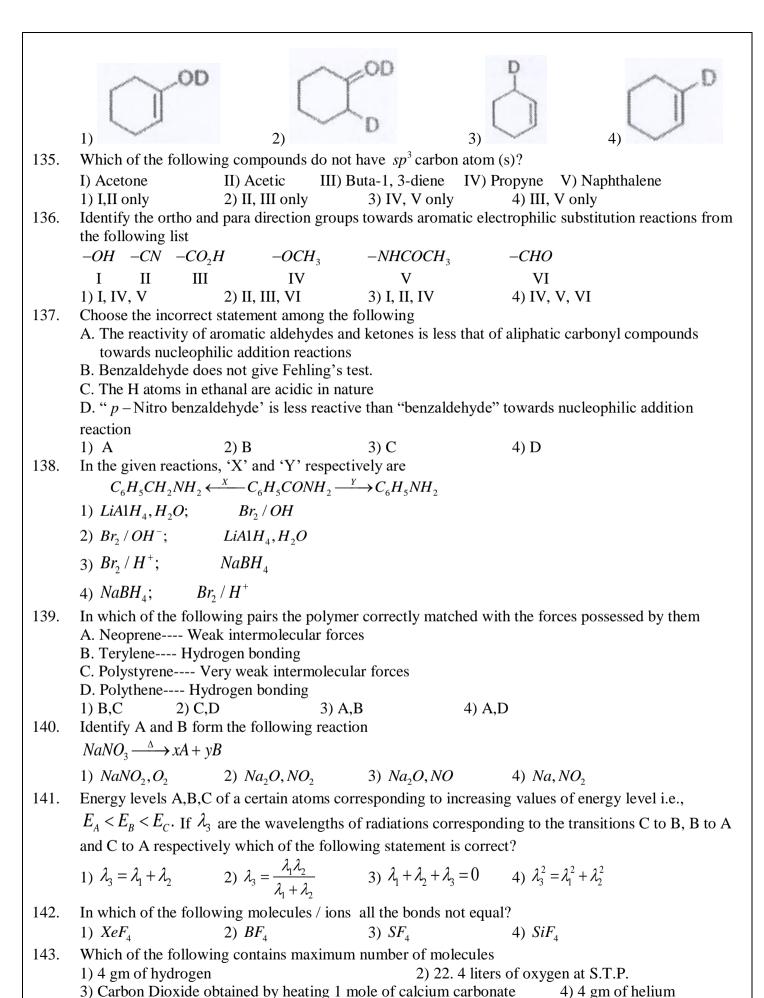
3) $\frac{3}{\sqrt{2}}$

88. A tennis ball bounces down a flight of stairs, striking each step in turn and rebounding to the half of height of the step. The coefficient of restitution is


3) $\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{2}}$ 4) $\left(\frac{1}{\sqrt{2}}\right)^{\frac{1}{4}}$


The radius of a solid sphere is R and its density D. When it is made to rotate about an axis passing 89. through any diameter of sphere, then the expression for its moment of inertia is


2) $\frac{8}{15}\pi DR^5$ 3) $\frac{28}{15}\pi DR^5$ 4) $\frac{28}{5}\pi DR^5$ 1) $\frac{8}{7}\pi DR^{5}$

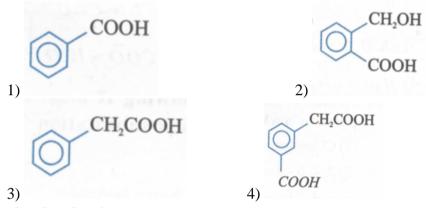

The coefficient of linear expansion of an inhomogeneous rod change linearly from α_1 to α_2 from one 90. end to the other end of the rod. The effective coefficients of linear expansion of rod is

	1) $\alpha_1 + \alpha_2$	$2) \frac{\alpha_1 + \alpha_2}{2}$	3) $\sqrt{\alpha_1 \alpha_2}$	4) $\alpha_1 - \alpha_2$			
91.	In two vessels of same volume, atomic hydrogen and helium at pressure 1 atm and 2 atm are filled. If the temperature of both the samples is same, then average speed of hydrogen atom (C_H) will be relate to helium (C_{He}) as						
	110	$2) C_H = C_{He}$	$3) C_H = 2C_{He}$	4) $C_H = \frac{C_{He}}{2}$			
92.	The heat energy require 1) 2700 kcal	ed to vapourise 5kg of wa 2) 1000 kcal	ater at 373 K is 3) 27 kcal	4) 270 kcal			
93.	A man of 60 kg gains	s 1000 cal of heat by ea this energy is $g = 9.8$		fficiency is 56%. The height to which			
94.	1) 4m	2) 20 m	3) 28 m	4) 0.2 m onductivities K_A , K_B and			
<i>)</i> π.							
		_		kept at a certain temperature			
	arrangements conduc	t heat at the same rate	K_C must be equal to	erature difference. The two			
	$1) K_A + K_B$	$2)\frac{K_A + K_B}{K_A K_B}$	$3) \frac{1}{2} (K_A + K_B)$	$4) \frac{K_A K_B}{K_A + K_B}$			
95.	Mass $M = 1$ unit is divided into two parts X and $(1 - X)$. For a given separation the value of X for which the gravitational force between them becomes maximum is						
	1) $\frac{1}{2}$	2) $\frac{3}{5}$	3)1	4) 2			
96.	A simple pendulum of length l is connected to the ceiling of a vehicle that is moving down along a smooth inclined plane 4 in 5. then its period of oscillation is						
	1) $2\pi\sqrt{\frac{5l}{4g}}$	$2) \ 2\pi \sqrt{\frac{4l}{5g}}$	3) $2\pi\sqrt{\frac{5l}{3g}}$	4) $2\pi\sqrt{\frac{3l}{5g}}$			
97.	composite wire is hur in the length of the co	ng from a rigid support	and a load is suspenden, then the increase in	section are joined end to end. The ed from the free end. If the increase the length of each wire is {in mm}. 4) 2.1,0.6			
98.	The excess pressure is (specific gravity =0.8)	nside a spherical soap l 3),2 mm high, the surface	bubble of radius 1 cm ce tension of the bubbl	is balanced by a column of oil le is			
	1) $3.92N/m$	2) 0.0392 N / m	3) $0.392N/m$	4) $0.00392N/m$			
99.	frequency of that fork i	S		ns are either 169N or 196N. The			
100	1) 162 Hz	2) 190 Hz	3) 200 Hz	4) 80 Hz			
100.		-	rors inclined at a certain	angle undergoes a deviation of 300° .			
	The number of observa 1) 60	2) 12	3) 11	4) 5			
101.		,	,	endicular to the principal axis. If the			
	power of the original lens is 4D, the power of one of the two parts is						
	1) 2D	2) 3D	3) 4D	4) 5D			
102.	In Young's double slit experiment, the 8th maximum with wavelength λ_1 is at a distance d_1 from the						
	central maximum and the 6th maximum with wavelength λ_2 is at a distance d_2 from central maximum						
	Then (d_1/d_2) is equa	l to					
	$1) \frac{4}{3} \left(\frac{\lambda_2}{\lambda_1} \right)$	$2) \frac{4}{3} \left(\frac{\lambda_1}{\lambda_2} \right)$	$3) \ \frac{3}{4} \left(\frac{\lambda_2}{\lambda_1} \right)$	4) $\frac{3}{4} \left(\frac{\lambda_1}{\lambda_2} \right)$			

144.

Oxidation number of carbon in carbon suboxide (C_3O_2)

	1) $\frac{+2}{3}$	2) $\frac{+4}{3}$	3) +4	4) $\frac{-4}{3}$				
145.		volume contain separa		H_2 and CH_4 . If the first vessel is at ide them is				
	1) 1:2	2) 2:1	3) 4:1	4) 8:1				
146.	Oxygen is present in a flask of $1.12L$ capacity at a pressure of 7.6×10^{-10} mm of Hg at $0^{0}C$. The number of oxygen molecules in the flask is							
	1) 1.5×10^{10}	2) 3×10 ¹²	3) 3×10 ¹⁰	4) 6×10^{12}				
147.				ssure from $15^{\circ}C$ to $25^{\circ}C$ is				
	1) +19.87 <i>cal</i>	2) -198.7 <i>cal</i>	3) +198.7 <i>cal</i>	4) -19.87 <i>cal</i>				
148.	A system works unde	er cyclic process as foll	ows.					
	$v(inm^3)$ 10 10 30 $P(inP_a)$							
	Heat absorbed during							
		2) $\frac{22}{7} \times 10^3 J$	3) $\frac{22}{7} \times 10^4 J$	4) $\frac{22}{7} \times 10^5 J$				
149.	For the homogeneous	s reaction $4NH_3 + 50$	$O_{2} = \Box 4NO_{(g)} + 6H_{2}C$	$Q_{(g)}$ the equilibrium constant K_c has				
	the unit of	$\mathcal{S}(g)$	2(g) (8) 2	(8)				
	1) (<i>Conc</i>) ⁻¹	2) Conc	3) $(Conc)^{+10}$	4) It is dimensionless				
150.	The pH of a solution to be	at $25^{\circ}C$ is 2. If its pH	is to be changed to 4,	then conc. of H^+ of the original has				
	1) Doubled	2) Halved	•	times 4) Decreased by 100 times				
151.	When CO_2 is passed	into brine solution sat	urated with ammonia v	we get				
	1) NH_HHCO_3	2) $(NH_4)_2 CO_3$	3) $NaHCO_3$	4) Na_2CO_3				
152.	Which of the following 1) Al_2O_3 reacts with	ng is/are correct? CaO but not with SiO ₂	<u>!</u>					
	2) Thermal stability of carbonates; $BeCO_3 > MgCO_3 > CaCO_3 > SrCO_3 > BaCO_3$							
	3) Solubility of sulphates: $BeSO_4 > MgSO_4 > CaSO_4 > SrSO_4 > BaSO_4$							
	4) $BeCl_2$ for acidic solution in water while $BaCl_2$ forms neutral solution.							
153.	$H_3BO_3 \xrightarrow{375K} A \xrightarrow{\text{Red Heat}} B_2O_3$							
	$H_3BO_3 \xrightarrow{435K} A \xrightarrow{\text{Red Heat}} B_2O_3$							
	The compounds A & B are 1) Orthoboric acid, metaboric acid 2) Metaboric acid, Tetra boric acid 3) Tetra boric acid, Metaboric acid 4) Tetra boric acid, orthoboric acid							
154.		rates H ₂ gas with steam		0.5				
155	1) C	2) Si	3) Sn	4) Ge				
155.		wing reactions, H_2O_2		ent?				
	1) $PbO_{2(s)} + H_2O_{2(aq)} \rightarrow PbO_{(s)} + H_2O_{(l)} + O_{2(g)}$							
	2) $Na_2SO_{3(ag)} + H_2O_{2(aq)} + \rightarrow Na_2SO_{4(aq)} + H_2O_{(l)}$							
	(-1)	3) $2KI_{(aq)} + H_2O_{2(aq)} \rightarrow 2KOH_{(aq)} + I_{2(s)}$						
	4) All the above							


156. What is the order of reactivity of the following compounds towards very dilute aqueous

 $1) \ I < III < II < IV \qquad 2) \ II < I < III < IV \qquad 3) \ IV < II < III < I \qquad 4) \ III < II < IV < IV$

$$CH_2OH$$

$$SOCl_2 X \xrightarrow{\text{alc.KCN}} Y \xrightarrow{H_3O^+} Z. Z \text{ is}$$

157.

158. $CH_3CH_2CH_2OH + PBr_3 \rightarrow A$

 $CH_3CH_2CH_2OH + Na \rightarrow B$, $A+B \rightarrow C$. Product 'C' is

- 1) $(CH_3CH_2CH_2)_2O$
- 2) $CH_3 CH = CH_2$
- 3) both 1 & 2
- 4) $(CH_3CH_2)_2O$

- 159. $C_6H_5 O CH_3 + HI_{(excess)} \rightarrow$
 - 1) CH_3OH and C_6H_5I
- 2) CH_3I and C_6H_5OH
- 3) CH_3I and C_6H_5I
- 4) C_6H_6 and CH_4
- 160. In the following compounds, the decreasing order of acidity is

- 1) *I* > *IV* > *III* > *II*
- 2) II > IV > I > II
- 3) II > I > III > IV
- 4) IV > III > I > II

KEY SHEET

O1	MATHS									
11	01	02	03	04	05	06	07	08	09	10
2 3 1 1 1 3 3 2 1 3 21 22 23 24 25 26 27 28 29 30 2 1 3 2 3 2 4 2 1 4 31 32 33 34 35 36 37 38 39 40 2 1 1 4 3 1 1 1 4 3 41 42 43 44 45 46 47 48 49 50 3 2 3 3 1 3 3 1 3 2 51 52 53 54 55 56 57 58 59 60 2 1 3 2 2 2 4 1 3 4 4 4 3 2 2 3 4	3	1	3	3	3	4	3	2	2	1
21 22 23 24 25 26 27 28 29 30 2 1 3 2 3 2 4 2 1 4 31 32 33 34 35 36 37 38 39 40 2 1 1 4 3 1 1 1 4 3 41 42 43 44 45 46 47 48 49 50 3 2 3 3 1 3 3 1 3 2 51 52 53 54 55 56 57 58 59 60 2 1 3 2 2 2 2 4 1 3 4 61 62 63 64 65 66 67 68 69 70 2 3 2 1 <										
2 1 3 2 3 2 4 2 1 4 31 32 33 34 35 36 37 38 39 40 2 1 1 4 3 1 1 1 4 3 41 42 43 44 45 46 47 48 49 50 3 2 3 3 1 3 3 1 3 2 51 52 53 54 55 56 57 58 59 60 2 1 3 2 2 2 4 1 3 4 61 62 63 64 65 66 67 68 69 70 2 3 2 1 4 3 2 2 3 4 71 72 73 74 75 76	2	3	1	1	1	3	3	2	1	3
31 32 33 34 35 36 37 38 39 40	21	22		24		26	27	28	29	30
2 1 1 4 3 1 1 1 4 3 41 42 43 44 45 46 47 48 49 50 3 2 3 3 1 3 3 1 3 2 51 52 53 54 55 56 57 58 59 60 2 1 3 2 2 2 4 1 3 4 61 62 63 64 65 66 67 68 69 70 2 3 2 1 4 3 2 2 3 4 71 72 73 74 75 76 77 78 79 80 1 3 2 4 4 3 2 3 3 3 3 3 3 3 3 3 3	2	1	3	2	3	2	4	2	1	4
41 42 43 44 45 46 47 48 49 50 3 2 3 3 1 3 3 1 3 2 51 52 53 54 55 56 57 58 59 60 2 1 3 2 2 2 4 1 3 4 61 62 63 64 65 66 67 68 69 70 2 3 2 1 4 3 2 2 3 4 71 72 73 74 75 76 77 78 79 80 1 3 2 4 4 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 9 90 90 90 90 90 90 9	31	32	33	34	35	36	37	38	39	40
3 2 3 3 1 3 3 1 3 2 51 52 53 54 55 56 57 58 59 60 2 1 3 2 2 2 4 1 3 4 61 62 63 64 65 66 67 68 69 70 2 3 2 1 4 3 2 2 3 4 PHYSICS 81 82 83 84 85 86 87 88 89 90 3 3 3 3 2 1 4 2 2 2 91 92 93 94 95 96 97 98 99 100 3 1 1 4 1 3 4 2 1 3 1 101 102 </td <td>2</td> <td>1</td> <td>1</td> <td>4</td> <td>3</td> <td>1</td> <td>1</td> <td>1</td> <td>4</td> <td>3</td>	2	1	1	4	3	1	1	1	4	3
51 52 53 54 55 56 57 58 59 60 2 1 3 2 2 2 4 1 3 4 61 62 63 64 65 66 67 68 69 70 2 3 2 1 4 3 2 2 3 4 71 72 73 74 75 76 77 78 79 80 1 3 2 4 4 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 9 90					45			48		
2 1 3 2 2 2 4 1 3 4 61 62 63 64 65 66 67 68 69 70 2 3 2 1 4 3 2 2 3 4 71 72 73 74 75 76 77 78 79 80 1 3 2 4 4 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 9 99 100 3 1 1 4 1 2 2 2 2 2 2 2 2 2 2 2 2 100 3 1 1 4 1 3 4 2 1 3 1 10 103 104 105	3	2	3	3	1	3	3	1	3	2
61 62 63 64 65 66 67 68 69 70 2 3 2 1 4 3 2 2 3 4 71 72 73 74 75 76 77 78 79 80 1 3 2 4 4 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 4 2 2 2 2 9 99 100 3 1 1 4 1 2 2 1 4 2 2 2 2 2 2 9 99 100 3 1 1 4 1 3 4 2 1 3 1 10 10 100 100 100 100 110 110 10 100 100 10	51	52	53	54	55	56	57	58	59	60
2 3 2 1 4 3 2 2 3 4 71 72 73 74 75 76 77 78 79 80 1 3 2 4 4 3 2 3 3 3 PHYSICS 81 82 83. 84 85 86 87 88 89 90 3 3 3 2 1 4 2 2 2 91 92 93 94 95 96 97 98 99 100 3 1 1 4 1 3 4 2 1 3 101 102 103 104 105 106 107 108 109 110 1 2 1 1 1 3 3 4 3 2 111 112 113	2	1	3	2	2	2	4	1	3	4
71 72 73 74 75 76 77 78 79 80 PHYSICS 81 82 83. 84 85 86 87 88 89 90 3 3 3 2 1 4 2 2 2 91 92 93 94 95 96 97 98 99 100 3 1 1 4 1 3 4 2 1 3 101 102 103 104 105 106 107 108 109 110 1 2 1 1 3 3 4 3 2 111 112 113 114 115 116 117 118 119 120 3 1 1 3 1 2 3 3 3 3 3 3 3 3	61	62	63	64	65	66	67	68	69	70
PHYSICS 81 82 83. 84 85 86 87 88 89 90 3 3 3 2 1 4 2 2 2 91 92 93 94 95 96 97 98 99 100 3 1 1 4 1 3 4 2 1 3 101 102 103 104 105 106 107 108 109 110 1 2 1 1 3 3 4 3 2 111 112 113 114 115 116 117 118 119 120 3 1 1 3 1 2 3 3 3 3 3 3 CHEMISTRY 121 122 123 124 125 126 127 128 129 <td>2</td> <td>3</td> <td>2</td> <td>1</td> <td>4</td> <td>3</td> <td>2</td> <td>2</td> <td>3</td> <td>4</td>	2	3	2	1	4	3	2	2	3	4
PHYSICS 81 82 83. 84 85 86 87 88 89 90 3 3 3 2 1 4 2 2 2 91 92 93 94 95 96 97 98 99 100 3 1 1 4 1 3 4 2 1 3 101 102 103 104 105 106 107 108 109 110 1 2 1 1 1 3 3 4 3 2 111 112 113 114 115 116 117 118 119 120 3 1 1 3 1 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <td>71</td> <td>72</td> <td>73</td> <td>74</td> <td>75</td> <td>76</td> <td>77</td> <td>78</td> <td>79</td> <td>80</td>	71	72	73	74	75	76	77	78	79	80
81 82 83. 84 85 86 87 88 89 90 3 3 3 2 1 4 2 2 2 91 92 93 94 95 96 97 98 99 100 3 1 1 4 1 3 4 2 1 3 101 102 103 104 105 106 107 108 109 110 1 2 1 1 1 3 3 4 3 2 111 112 113 114 115 116 117 118 119 120 3 1 1 3 1 2 3 3 3 3 3 3 CHEMISTRY 121 122 123 124 125 126 127 128 129 130	1	3	2	4	4	3	2	3	3	3
3 3 3 2 1 4 2 2 2 91 92 93 94 95 96 97 98 99 100 3 1 1 4 1 3 4 2 1 3 101 102 103 104 105 106 107 108 109 110 1 2 1 1 1 3 3 4 3 2 111 112 113 114 115 116 117 118 119 120 3 1 1 3 1 2 3					PHY	SICS				
91 92 93 94 95 96 97 98 99 100 3 1 1 4 1 3 4 2 1 3 101 102 103 104 105 106 107 108 109 110 1 2 1 1 1 3 3 4 3 2 111 112 113 114 115 116 117 118 119 120 3 1 1 3 1 2 3 3 3 3 CHEMISTRY 121 122 123 124 125 126 127 128 129 130 4 2 3 1 2 4 1 3 1 4 131 132 133 134 135 136 137 138 139 140	81	82	83.	84	85	86	87	88	89	90
3	3	3	3	3	2	1	4	2	2	2
101 102 103 104 105 106 107 108 109 110 1 2 1 1 1 3 3 4 3 2 111 112 113 114 115 116 117 118 119 120 3 1 1 3 1 2 3 3 3 3 CHEMISTRY 121 122 123 124 125 126 127 128 129 130 4 2 3 1 2 4 1 3 1 4 131 132 133 134 135 136 137 138 139 140 1 4 2 4 4 1 4 1 3 1 141 142 143 144 145 146 147 148 149 150 <	91	92	93	94	95	96	97	98	99	100
1 2 1 1 1 3 3 4 3 2 111 112 113 114 115 116 117 118 119 120 CHEMISTRY 121 122 123 124 125 126 127 128 129 130 4 2 3 1 2 4 1 3 1 4 131 132 133 134 135 136 137 138 139 140 1 4 2 4 4 1 4 1 3 1 141 142 143 144 145 146 147 148 149 150 2 3 1 2 3 3 4 3 2 4	3	1	1	4	1	3	4	2	1	3
111 112 113 114 115 116 117 118 119 120 3 1 1 3 1 2 3 3 3 3 CHEMISTRY 121 122 123 124 125 126 127 128 129 130 4 2 3 1 2 4 1 3 1 4 131 132 133 134 135 136 137 138 139 140 1 4 2 4 4 1 4 1 3 1 141 142 143 144 145 146 147 148 149 150 2 3 1 2 3 3 4 3 2 4	101	102	103	104	105	106	107	108	109	110
3 1 1 3 1 2 3 3 3 3 CHEMISTRY 121 122 123 124 125 126 127 128 129 130 4 2 3 1 2 4 1 3 1 4 131 132 133 134 135 136 137 138 139 140 1 4 2 4 4 1 4 1 3 1 141 142 143 144 145 146 147 148 149 150 2 3 1 2 3 3 4 3 2 4	1	2	1	1	1	3	3	4	3	2
CHEMISTRY 121 122 123 124 125 126 127 128 129 130 4 2 3 1 2 4 1 3 1 4 131 132 133 134 135 136 137 138 139 140 1 4 2 4 4 1 4 1 3 1 141 142 143 144 145 146 147 148 149 150 2 3 1 2 3 3 4 3 2 4	111	112	113	114	115	116	117	118	119	120
121 122 123 124 125 126 127 128 129 130 4 2 3 1 2 4 1 3 1 4 131 132 133 134 135 136 137 138 139 140 1 4 2 4 4 1 4 1 3 1 141 142 143 144 145 146 147 148 149 150 2 3 1 2 3 3 4 3 2 4	3	1	1	3	1	2	3	3	3	3
4 2 3 1 2 4 1 3 1 4 131 132 133 134 135 136 137 138 139 140 1 4 2 4 4 1 4 1 3 1 141 142 143 144 145 146 147 148 149 150 2 3 1 2 3 3 4 3 2 4	CHEMISTRY									
131 132 133 134 135 136 137 138 139 140 1 4 2 4 4 1 4 1 3 1 141 142 143 144 145 146 147 148 149 150 2 3 1 2 3 3 4 3 2 4	121	122	123	124	125	126	127	128	129	130
1 4 2 4 4 1 4 1 3 1 141 142 143 144 145 146 147 148 149 150 2 3 1 2 3 3 4 3 2 4	4	2	3	1	2	4	1	3	1	4
141 142 143 144 145 146 147 148 149 150 2 3 1 2 3 3 4 3 2 4	131	132	133	134	135	136	137	138	139	140
2 3 1 2 3 3 4 3 2 4	1	4	2	4	4	1	4	1	3	1
	141	142	143	144	145	146	147	148	149	150
	2	3	1	2	3	3	4	3	2	4
151 152 153 154 155 156 157 158 159 160	151	152	153	154	155	156	157	158	159	160
3 4 2 3 1 1 3 1 2 4	3	4	2	3	1	1	3	1	2	4